Journal of Inorganic Materials, Volume. 38, Issue 10, 1149(2023)

Oxide Memristors for Brain-inspired Computing

Xia ZHUGE1... Renxiang ZHU1, Jianmin WANG1, Jingrui WANG1, and Fei ZHUGE2,3,45,* |Show fewer author(s)
Author Affiliations
  • 11. School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo 315211, China
  • 22. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • 33. Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
  • 44. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100029, China
  • 55. Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
  • show less
    References(144)

    [2] Z X LI, X Y GENG, J WANG et al. Emerging artificial neuron devices for probabilistic computing. Frontiers in Neuroscience, 15: 717947(2021).

    [9] Z WANG, T ZENG, Y REN et al. Toward a generalized Bienenstock- Cooper-Munro rule for spatiotemporal learning via triplet-STDP in memristive devices. Nature Communications, 11: 1510(2020).

    [12] L CHUA. Resistance switching memories are memristors. Applied Physics A-Materials Science&Processing, 102: 765(2011).

    [13] D B STRUKOV, G S SNIDER, D R STEWART et al. The missing memristor found. Nature, 453: 80(2008).

    [14] S PI, C LI, H JIANG et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nature Nanotechnology, 14: 35(2019).

    [16] R S WILLIAMS, next What’s. Computing in Science& Engineering, 7(2017).

    [20] Y WANG, Y GONG, S HUANG et al. Memristor-based biomimetic compound eye for real-time collision detection. Nature Communications, 12: 5979(2021).

    [21] S-O PARK, H JEONG, J PARK et al. Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing. Nature Communications, 13: 2888(2022).

    [22] Z LIU, J TANG, B GAO et al. Neural signal analysis with memristor arrays towards high-efficiency brain-machine interfaces. Nature Communications, 11: 4234(2020).

    [23] S HAMDIOUI, L XIE, H A D NGUYEN et al.

    [24] M PREZIOSO, F MERRIKH-BAYAT, B D HOSKINS et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 521: 61(2015).

    [25] P M SHERIDAN, F X CAI, C DU et al. Sparse coding with memristor networks. Nature Nanotechnology, 12: 784(2017).

    [27] P YAO, H Q WU, B GAO et al. Face classification using electronic synapses. Nature Communications, 8: 15199(2017).

    [28] P YAO, H Q WU, B GAO et al. Fully hardware-implemented memristor convolution neural network. Nature, 577: 641(2020).

    [32] F ZHUGE, B HU, C HE et al. Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon, 49: 3796(2011).

    [37] D KWON, K KIM, J H JANG et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotechnology, 5: 148(2010).

    [48] J YAO, L ZHONG, D NATELSON et al. Intrinsic resistive switching and memory effects in silicon oxide. Applied Physics A-Materials Science&Processing, 102: 835(2011).

    [55] X CHEN, H ZHANG, K RUAN et al. Annealing effect on the bipolar resistive switching behaviors of BiFeO3 thin films on LaNiO3-buffered Si substrates. Journal of Alloys and Compounds, 529: 108(2012).

    [57] J J YANG, D B STRUKOV, D R STEWART. Memristive devices for computing. Nature Nanotechnology, 8: 13(2013).

    [59] J J YANG, M D PICKET, X LI et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnology, 3: 429(2008).

    [61] J J YANG, J P STRACHAN, F MIAO et al. Metal/TiO2 interfaces for memristive switches. Applied Physics A-Materials Science&Processing, 785(2011).

    [69] W WANG, G PREDRETTI, V MILO et al. Computing of temporal information in spiking neural networks with ReRAM synapses. Faraday Discussions, 213: 453(2019).

    [72] J PARK, E PARK, S KIM et al. Nitrogen-induced enhancement of synaptic weight reliability in titanium oxide-based resistive artificial synapse and demonstration of the reliability effect on the neuromorphic system. ACS Applied Materials&Interfaces, 32178(2019).

    [77] L LIU, W XIONG, Y LIU et al. Designing high-performance storage in HfO2/BiFeO3 memristor for artificial synapse applications. Advanced Electronic Materials, 1901012(2020).

    [78] M-J LEE, C B LEE, D LEE et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nature Materials, 10: 625(2011).

    [82] M HANSEN, F ZAHARI, H KOHLSTEDT et al. Unsupervised Hebbian learning experimentally realized with analogue memristive crossbar arrays. Scientific Reports, 8: 8914(2018).

    [84] S BANG, M H KIM, T H KIM et al. Gradual switching and self-rectifying characteristics of Cu/α-IGZO/p+-Si RRAM for synaptic device application. Solid-State Electronics, 150: 60(2018).

    [87] A S SOKOLOV, Y R JEON, S KIM et al. Bio-realistic synaptic characteristics in the cone-shaped ZnO memristive device. NPG Asia Materials, 11: 5(2019).

    [89] A S SOKOLOV, Y R JEON, B KU et al. Ar ion plasma surface modification on the heterostructured TaOx/InGaZnO thin films for flexible memristor synapse. Journal of Alloys and Compounds, 822: 153625(2020).

    [90] C MAHATA, C LEE, Y AN et al. Resistive switching and synaptic behaviors of an HfO2/Al2O3 stack on ITO for neuromorphic systems. Journal of Alloys and Compounds, 826: 154434(2020).

    [91] J Y CHEN, M C WU, Y H TING et al. Applications of p-n homojunction ZnO nanowires to one-diode one-memristor RRAM arrays. Scripta Materialia, 187: 439(2020).

    [94] L ZHANG, Z XU, J HAN et al. Resistive switching performance improvement of InGaZnO-based memory device by nitrogen plasma treatment. Journal of Materials Science&Technology, 49: 1(2020).

    [99] Y TAO, Z WANG, H XU et al. Moisture-powered memristor with interfacial oxygen migration for power-free reading of multiple memory states. Nano Energy, 71: 104628(2020).

    [106] I VALOV, E LINN, S TAPPERTZHOFEN et al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nature Communications, 4: 1771(2013).

    [109] A WEDIG, M LUEBBEN, D Y CHO et al. Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nature Nanotechnology, 11: 67(2016).

    [110] H JIANG, L HAN, P LIN et al. Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor. Scientific Reports, 6: 28525(2016).

    [112] Z WANG, S JOSHI, S E SAVEL’EV et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nature Materials(2017).

    [115] A ALI, Y ABBAS, H ABBAS et al. Dependence of InGaZnO and SnO2 thin film stacking sequence for the resistive switching characteristics of conductive bridge memory devices. Applied Surface Science, 525: 146390(2020).

    [116] C F CHANG, J Y CHEN, G M HUANG et al. Revealing conducting filament evolution in low power and high reliability Fe3O4/Ta2O5 bilayer RRAM. Nano Energy, 53: 871(2018).

    [117] Q HU, R LI, X ZHANG et al. Lithium ion trapping mechanism of SiO2 in LiCoO2 based memristors. Scientific Reports, 9: 5081(2019).

    [118] P S IOANNOU, E KYRIAKIDES, O SCHNEEGANS et al. Evidence of biorealistic synaptic behavior in diffusive Li-based two- terminal resistive switching devices. Scientific Reports, 10: 8711(2020).

    [126] X YAN, C QIN, C LU et al. Robust Ag/ZrO2/WS2/Pt memristor for neuromorphic computing. ACS Applied Materials&Interfaces, 48029(2019).

    [130] D S KUZMICHEV, A G CHERNIKOVA, M G KOZODAEV et al. Resistance switching peculiarities in nonfilamentary self-rectified TiN/Ta2O5/Ta and TiN/HfO2/Ta2O5/Ta stacks. Physics Status Solidi-Rapid Research Letters, 1900952(2020).

    [131] Z XU, F LI, C WU et al. Ultrathin electronic synapse having high temporal/spatial uniformity and an Al2O3/graphene quantum dots/Al2O3 sandwich structure for neuromorphic computing. NPG Asia Materials, 11: 18(2019).

    [136] F ZHOU, Z ZHOU, J CHEN et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nature Nanotechnology, 14: 776(2019).

    [138] D-C HU, R YANG, L JIANG et al. Memristive synapses with photoelectric plasticity realized in ZnO1-x/AlOy heterojunction. ACS Applied Materials&Interfaces, 6463(2018).

    [140] J ZHU, T ZHANG, Y YANG et al. A comprehensive review on emerging artificial neuromorphic devices. Applied Physics Reviews, 7: 011312(2020).

    Tools

    Get Citation

    Copy Citation Text

    Xia ZHUGE, Renxiang ZHU, Jianmin WANG, Jingrui WANG, Fei ZHUGE. Oxide Memristors for Brain-inspired Computing[J]. Journal of Inorganic Materials, 2023, 38(10): 1149

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 9, 2023

    Accepted: --

    Published Online: Mar. 6, 2024

    The Author Email: ZHUGE Fei (zhugefei@nimte.ac.cn)

    DOI:10.15541/jim20230066

    Topics