Optics and Precision Engineering, Volume. 32, Issue 17, 2591(2024)

Grating interferometric precision nanometric measurement technology

Xinghui LI1,2、* and Can CUI1
Author Affiliations
  • 1Shenzhen International Graduate School, Tsinghua University, Shenzhen58055, China
  • 2Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen518055, China
  • show less
    Figures & Tables(24)
    Overall research framework of grating interference precision nanometer measurement technology
    Schematic diagram of grating interferometer
    Grating scales produced by HEIDENHAIN
    Absolute single degree of freedom grating interferometer[35]
    Absolute two degree of freedom grating interferometer[41]
    Nano-resolution three-axis sensor developed by Tohoku University[42]
    Subnanometer three-axis surface encoder with short-period planar grating for platform motion measurement[43-44]
    Three-degree-of-freedom measurement system with expanded Z-axis range[46]
    Three-degree-of-freedom grating encoder based on quadrilateral pyramid prism[47]
    Six degrees of freedom homodyne grating interferometer[54]
    Dual-channel six-degree-of-freedom grating encoder[56]
    Four degrees of freedom absolute grating encoder [57]
    Frequency-stabilized light sources based on MTS systems[58]
    Dual frequency stable laser system[69]
    Heterodyne two-degree-of-freedom system[62]
    Two-dimensional grating encoder based on dual-space heterodyne optical path[65]
    Heterodyne three-degree-of-freedom grating interferometer[69]
    Multi-reading head six-degree-of-freedom model[73]
    Technology spatially separated heterodyne optical interferometer[93]
    Heterodyne grating encoder based on quasi-common optical path[94]
    Six-degree-of-freedom measurement system based on four two-degree-of-freedom readheads proposed by ASML[97-98]
    Multi-degree-of-freedom measurement readhead model[101]
    • Table 1. Comparison of precision nano measurement technology

      View table
      View in Article

      Table 1. Comparison of precision nano measurement technology

      性 能激光干涉仪9-10时栅传感器12-13光栅干涉仪14-17
      测量精度

      优于0.1 nm*

      0.9 nm#

      96 nm0.2 nm
      测量范围0~10 m0~0.2 m0~2 m
      测量基准光源波长时间光栅栅距
      测量元件反射镜坐标系光栅
      主要误差来源暴露光路受空气折射率变化空间谐波分量与安装误差光栅面形制造工艺误差
      多自由度扩展

      采用光束分离模块或者

      多方向干涉仪组合11

      多维空域中构建特征波动场

      (磁场或电场)

      通过平面光栅的

      不同方向衍射光

    • Table 2. Comparison of homodyne and heterodyne grating interferometer systems

      View table
      View in Article

      Table 2. Comparison of homodyne and heterodyne grating interferometer systems

      性能及特点零差式外差式
      光源类型单频光源(如激光二极管,体积小)双频光源(更加稳定,体积大)
      分辨率pm级pm级
      测量精度亚μm级至nm级亚nm级至pm级
      优 势体积小便于密封,浸液环境下有优势稳定性高,抗干扰能力强
      劣 势光源直线漂移影响精度水平光源体积大,不利于密封和小型化
    Tools

    Get Citation

    Copy Citation Text

    Xinghui LI, Can CUI. Grating interferometric precision nanometric measurement technology[J]. Optics and Precision Engineering, 2024, 32(17): 2591

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Precision Measurement and Sensing

    Received: Apr. 17, 2024

    Accepted: --

    Published Online: Nov. 18, 2024

    The Author Email: LI Xinghui (li.xinghui@sz.tsinghua.edu.cn)

    DOI:10.37188/OPE.20243217.2591

    Topics