Chinese Journal of Ship Research, Volume. 20, Issue 1, 38(2025)

Parameter identification of unmanned surface vehicle MMG model based on an improved extended Kalman filter

Pengbo SUN1... Zaopeng DONG1, Wei LIU2, Jinliang SHENG1 and Zhihao LI1 |Show fewer author(s)
Author Affiliations
  • 1School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology,Wuhan 430063, China
  • 2China Institute of Marine Technology & Economy, Beijing 100081, China
  • show less
    Figures & Tables(24)
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    [in Chinese]
    • Table 1. Main parameters of unmanned surface vehicle

      View table
      View in Article

      Table 1. Main parameters of unmanned surface vehicle

      参数数值参数数值
      船长/m11.00型宽/m3.20
      吃水/m0.63质量/t8.00
    • Table 2. EKF parameter identification results

      View table
      View in Article

      Table 2. EKF parameter identification results

      参数数值参数数值
      $ {a'_1} $−4.72×10−5$ {a'_2} $0.009 8
      $ {a'_3} $2.02×10−5$ {a'_4} $−0.001 5
      $ {X'_{uu}} $−0.457 8${X'_{vv}}$0.893 1
      $ {X'_{vr}} $0.199 6${X'_{rr}}$−0.082 7
      $ {b'_1} $1.90×10−4$ {b'_2} $−0.014 1
      $ {b'_3} $8.95×10−6$ {b'_4} $−7.89×10−4
      $ {Y'_v} $−0.376 2${Y'_r}$0.226 4
      $ {Y'_{\left| v \right|v}} $0.376 0$ {Y'_{\left| r \right|r}} $−0.099 6
      ${Y'_{vvr}}$−1.653 8${Y'_{vrr}}$1.130 4
      ${c'_1}$1.24×10−4${c'_2}$−0.006 7
      ${c'_3}$7.96×10−6${c'_4}$−6.19×10−4
      $ {N'_v} $−0.014 6${N'_r}$−0.004 2
      $ {N'_{\left| v \right|v}} $0.008 2$ {N'_{\left| r \right|r}} $−0.008 7
      ${N'_{vvr}}$−0.048 3${N'_{vrr}}$0.130 8
    • Table 3. Improved EKF parameter identification results

      View table
      View in Article

      Table 3. Improved EKF parameter identification results

      参数数值参数数值
      $ {a'_1} $−3.88×10−5$ {a'_2} $0.009 1
      $ {a'_3} $239×10−5$ {a'_4} $−0.001 9
      $ {X'_{uu}} $−0.447 0${X'_{vv}}$0.611 5
      $ {X'_{vr}} $0.293 2${X'_{rr}}$−0.100 6
      $ {b'_1} $1.94×10−4$ {b'_2} $−0.013 7
      $ {b'_3} $5.81×10−6$ {b'_4} $−5.45×10−4
      $ {Y'_v} $−0.285 0${Y'_r}$0.179 0
      $ {Y'_{\left| v \right|v}} $−2.205 4$ {Y'_{\left| r \right|r}} $−0.045 3
      ${Y'_{vvr}}$−10.396 1${Y'_{vrr}}$−0.310 8
      ${c'_1}$1.16×10−4${c'_2}$−0.006 1
      ${c'_3}$8.82×10−6${c'_4}$−6.78×10−4
      $ {N'_v} $−0.015 1${N'_r}$−0.004 4
      $ {N'_{\left| v \right|v}} $0.024 9$ {N'_{\left| r \right|r}} $−0.007 4
      ${N'_{vvr}}$−0.060 7${N'_{vrr}}$0.127 6
    • Table 4. Comparison of RMSE values of simulation data

      View table
      View in Article

      Table 4. Comparison of RMSE values of simulation data

      uvr$ \psi $
      EKF0.194 20.153 41.245 712.788 4
      改进EKF0.176 90.124 50.996 310.351 2
      相对误差/%−8.91−18.84−20.02−19.06
    • Table 5. Comparison of SMAPE values of simulation data

      View table
      View in Article

      Table 5. Comparison of SMAPE values of simulation data

      uvr$ \psi $
      EKF0.865 315.365 92.864 50.942 4
      改进EKF0.694 314.856 92.195 60.689 5
      相对误差/%−19.76−3.31−23.35−26.84
    Tools

    Get Citation

    Copy Citation Text

    Pengbo SUN, Zaopeng DONG, Wei LIU, Jinliang SHENG, Zhihao LI. Parameter identification of unmanned surface vehicle MMG model based on an improved extended Kalman filter[J]. Chinese Journal of Ship Research, 2025, 20(1): 38

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Maneuverability Forecast

    Received: Mar. 8, 2024

    Accepted: --

    Published Online: Mar. 13, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.03816

    Topics