Opto-Electronic Advances, Volume. 4, Issue 3, 200045-1(2021)

Review of micromachined optical accelerometers: from mg to sub-μg

Qianbo Lu1...2,*, Yinan Wang3, Xiaoxu Wang3, Yuan Yao4, Xuewen Wang1,2, and Wei Huang12 |Show fewer author(s)
Author Affiliations
  • 1Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an 710072, China
  • 2MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an 710072, China
  • 3The Key Laboratory of Information Fusion Technology, Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
  • 4Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China.
  • show less
    References(171)

    [1] [1]

    [2] Z Yazdi, F Ayazi, K Najafi. Micromachined inertial sensors. Proc IEEE, 86, 1640(1998).

    [3] [3] Advanced Microsystems for Automotive Applications 2005 (Springer, Berlin, Heidelberg, 2005).

    [4] Costa da, HFT Lima, NJ Alberto, H Rodrigues, PMF Pinto, et al. Optical fiber accelerometer system for structural dynamic monitoring. IEEE Sens J, 9, 1347-1354(2009).

    [5] [5] Opt Express 17, 20651–20660 (2009). DOI: 10.1117/12.851427

    [6] Q Wang, HF Liu, LC Tu. High-precision MEMS inertial sensors for geophysical applications. Navig Control, 17, 1(2018).

    [7] AB Tveten, A Dandridge, CM Davis, TG Giallorenzi. Fibre optic accelerometer. Electron Lett, 16, 854-856(1980).

    [8] E Abbaspour-Sani, RS Huang, CY Kwok. A novel optical accelerometer. IEEE Electron Device Lett, 16, 166-168(1995).

    [9] [9] Proceedings of 2018 IEEE Micro Electro Mechanical Systems 952–955 (IEEE, 2018); http://doi.org/10.1109/MEMSYS.2018.8346715.

    [10] Y Qin, A Brockett, Y Ma, A Razali, J Zhao, et al. Micro-manufacturing: research, technology outcomes and development issues. Int J Adv Manuf Technol, 47, 821-837(2010).

    [11] [11] Handbook of Silicon Based MEMS Materials and Technologies 3rd ed (Elsevier, Amsterdam, 2020).

    [12] BH Lu, HB Lan, HZ Liu. Additive manufacturing frontier: 3D printing electronics. Opto-Electron Adv, 1, 170004(2018).

    [13] YA Huang, H Wu, L Xiao, YQ Duan, H Zhu, et al. Assembly and applications of 3D conformal electronics on curvilinear surfaces. Mater Horiz, 6, 642-683(2019).

    [14] DV Dao, K Nakamura, TT Bui, S Sugiyama. Micro/nano-mechanical sensors and actuators based on SOI-MEMS technology. Adv Nat Sci Nanosci Nanotechnol, 1, 013001(2010).

    [15] GY Zhou, FS Chau. Grating-assisted optical microprobing of in-plane and out-of-plane displacements of microelectromechanical devices. J Microelectromech Syst, 15, 388-395(2006).

    [16] SG Bramsiepe, D Loomes, RP Middlemiss, DJ Paul, GD Hammond. A high stability optical shadow sensor with applications for precision accelerometers. IEEE Sens J, 18, 4108-4116(2018).

    [17] JA Plaza, A Llobera, C Dominguez, J Esteve, I Salinas, et al. BESOI-based integrated optical silicon accelerometer. J Microelectromech Syst, 13, 355-364(2004).

    [18] G Schröpfer, W Elflein, Labachelerie de, H Porte, S Ballandras. Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation. Sens Actuat A-Phys, 68, 344-349(1998).

    [19] VJ Cadarso, A Llobera, G Villanueva, V Seidemann, S Büttgenbach, et al. Polymer microoptoelectromechanical systems: accelerometers and variable optical attenuators. Sens Actuat A-Phys, 145, 147-153(2008).

    [20] A Llobera, V Seidemann, JA Plaza, VJ Cadarso, S Buttgenbach. Integrated polymer optical accelerometer. IEEE Photonics Technol Lett, 17, 1262-1264(2005).

    [21] A Llobera, V Seidemann, JA Plaza, VJ Cadarso, S Buttgenbach. SU-8 optical accelerometers. J Microelectromech Syst, 16, 111-121(2007).

    [22] [22] Proceedings of 2018 IEEE Micro Electro Mechanical Systems (MEMS) 113–116 (IEEE, 2018); http://doi.org/10.1109/MEMSYS.2018.8346496.

    [23] RP Middlemiss, A Samarelli, DJ Paul, J Hough, S Rowan, et al. Measurement of the Earth tides with a MEMS gravimeter. Nature, 531, 614-617(2016).

    [24] SH Tang, HF Liu, ST Yan, XC Xu, WJ Wu, et al. A high-sensitivity MEMS gravimeter with a large dynamic range. Microsyst Nanoeng, 5, 45(2019).

    [25] A Mustafazade, M Pandit, C Zhao, G Sobreviela, ZJ Du, et al. A vibrating beam MEMS accelerometer for gravity and seismic measurements. Sci Rep, 10, 10415(2020).

    [26] YX Duan, XY Wei, HR Wang, MH Zhao, ZM Ren, et al. Design and numerical performance analysis of a microgravity accelerometer with quasi-zero stiffness. Smart Mater Struct, 29, 075018(2020).

    [27] [27] Proceedings of the 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) 2131–2134 (IEEE, 2017); http://doi.org/10.1109/TRANSDUCERS.2017.7994496.

    [28] HC Zhang, XY Wei, YY Ding, ZD Jiang, J Ren. A low noise capacitive MEMS accelerometer with anti-spring structure. Sens Actuat A-Phys, 296, 79-86(2019).

    [29] EB Cooper, ER Post, S Griffith, J Levitan, SR Manalis, et al. High-resolution micromachined interferometric accelerometer. Appl Phys Lett, 76, 3316-3318(2000).

    [30] NC Loh, MA Schmidt, SR Manalis. Sub-10 cm3 interferometric accelerometer with nano-g resolution. J Microelectromech Syst, 11, 182-187(2002).

    [31] NA Hall, M Okandan, R Littrell, DK Serkland, GA Keeler, et al. Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation. J Microelectromech Syst, 17, 37-44(2008).

    [32] RP Williams, SK Hord, NA Hall. Optically read displacement detection using phase-modulated diffraction gratings with reduced zeroth-order reflections. Appl Phys Lett, 110, 151104(2017).

    [33] X Wang, LS Feng, BY Yao, XY Ren. Sensitivity improvement of micro-grating accelerometer based on differential detection method. Appl Opt, 52, 4091-4096(2013).

    [34] LH Chen, Q Lin, S Li, X Wu. Optical accelerometer based on high-order diffraction beam interference. Appl Opt, 49, 2658-2664(2010).

    [35] Y Zhang, S Gao, H Xiong, LS Feng. Optical sensitivity enhancement in grating based micromechanical accelerometer by reducing non-parallelism error. Opt Express, 27, 6565-6579(2019).

    [36] TH Zhang, HL Liu, LS Feng, X Wang, Y Zhang. Noise suppression of a micro-grating accelerometer based on the dual modulation method. Appl Opt, 56, 10003-10008(2017).

    [37] SS Zhao, CL Hou, J Bai, GG Yang, F Tian. Nanometer-scale displacement sensor based on phase-sensitive diffraction grating. Appl Opt, 50, 1413-1416(2011).

    [38] SS Zhao, J Zhang, CL Hou, J Bai, GG Yang. Optical accelerometer based on grating interferometer with phase modulation technique. Appl Opt, 51, 7005-7010(2012).

    [39] QB Lu, C Wang, J Bai, KW Wang, WX Lian, et al. Subnanometer resolution displacement sensor based on a grating interferometric cavity with intensity compensation and phase modulation. Appl Opt, 54, 4188-4196(2015).

    [40] H Li, SK Li, KK Deng, S Gao, LS Feng. Analysis and design of closed-loop detection technique for micro-grating accelerometer. J Lightwave Technol, 36, 5738-5745(2018).

    [41] S Gao, Z Zhou, Y Zhang, KK Deng, LS Feng. High-resolution micro-grating accelerometer based on a gram-scale proof mass. Opt. Express, 27, 34298-34311(2019).

    [42] H Li, KK Deng, S Gao, LS Feng. Design of closed-loop parameters with high dynamic performance for micro-grating accelerometer. IEEE Access, 7, 151939-151947(2019).

    [43] Y Zhang, LS Feng, X Wang, YJ Wang. Linearity enhancement of scale factor in an optical interrogated micromechanical accelerometer. Appl Opt, 55, 6115-6120(2016).

    [44] QB Lu, C Wang, J Bai, KW Wang, SQ Lou, et al. Minimizing cross-axis sensitivity in grating-based optomechanical accelerometers. Opt Express, 24, 9094-9111(2016).

    [45] QB Lu, J Bai, KW Wang, SL He. Design, optimization, and realization of a high-performance MOEMS accelerometer from a double-device-layer SOI wafer. J Microelectromech Syst, 26, 859-869(2017).

    [46] NA Hall, M Okandan, FL Degertekin. Surface and bulk-silicon-micromachined optical displacement sensor fabricated with the SwIFT-LiteTM process. J Microelectromech Syst, 15, 770-776(2006).

    [47] TA Berkoff, AD Kersey. Experimental demonstration of a fiber Bragg grating accelerometer. IEEE Photonics Technol Lett, 8, 1677-1679(1996).

    [48] N Linze, P Tihon, O Verlinden, P Mégret, M Wuilpart. Development of a multi-point polarization-based vibration sensor. Opti Express, 21, 5606-5624(2013).

    [49] TL Li, CY Shi, HL Ren. A novel fiber Bragg grating displacement sensor with a sub-micrometer resolution. IEEE Photonics Technol Lett, 29, 1199-1202(2017).

    [50] A Mita, I Yokoi. Fiber Bragg grating accelerometer for buildings and civil infrastructures. Proc SPIE, 4330, 479-486(2001).

    [51] YY Weng, XG Qiao, T Guo, ML Hu, ZY Feng, et al. A robust and compact fiber Bragg grating vibration sensor for seismic measurement. IEEE Sens J, 12, 800-804(2012).

    [52] P Munendhar, SK Khijwania. Two dimensional fiber Bragg grating based vibration sensor for structural health monitoring. AIP Conference Proceedings, 1536, 1324-1326(2013).

    [53] BJ Peng, Y Zhao, Y Zhao, J Yang. Tilt sensor with FBG technology and matched FBG demodulating method. IEEE Sens J, 6, 63-66(2006).

    [54] BO Guan, HY Tam, SY Liu. Temperature-independent fiber Bragg grating tilt sensor. IEEE Photonics Technol Lett, 16, 224-226(2004).

    [55] [55] Proceedings of 2009 Asia Communications and Photonics conference and Exhibition (ACP) 1–5 (IEEE, 2009). DOI: 10.1117/12.851427

    [56] SL He, XY Dong, K Ni, YX Jin, C Chan, et al. Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings. Meas Sci Technol, 21, 025203(2010).

    [57] XY Dong, C Zhan, K Hu, P Shum, CC Chan. Temperature-insensitive tilt sensor with strain-chirped fiber Bragg gratings. IEEE Photonics Technol Lett, 17, 2394-2396(2005).

    [58] P Ferdinand. Optical fiber Bragg grating inclinometry for smart civil engineering and public works. Proc SPIE, 41855, 41855O(2000).

    [59] R Aneesh, M Maharana, P Munendhar, HY Tam, SK Khijwania. Simple temperature insensitive fiber Bragg grating based tilt sensor with enhanced tunability. Appl Opt, 50, E172-E176(2011).

    [60] HL Bao, XY Dong, LY Shao, CL Zhao, SZ Jin. Temperature-insensitive 2-D tilt sensor by incorporating fiber Bragg gratings with a hybrid pendulum. Opt Commun, 283, 5021-5024(2010).

    [61] CS Fernandes, MTMR Giraldi, Sousa de, JCWA Costa, C Gouveia, et al. Curvature and vibration sensing based on core diameter mismatch structures. IEEE Trans Instrum Meas, 65, 2120-2128(2016).

    [62] K Li, THT Chan, MH Yau, T Nguyen, DP Thambiratnam, et al. Very sensitive fiber Bragg grating accelerometer using transverse forces with an easy over-range protection and low cross axial sensitivity. Appl Opt, 52, 6401-6410(2013).

    [63] TL Li, CY Shi, YG Tan, RY Li, ZD Zhou, et al. A diaphragm type fiber Bragg grating vibration sensor based on transverse property of optical fiber with temperature compensation. IEEE Sens J, 17, 1021-1029(2017).

    [64] T Erdogan, JE Sipe. Tilted fiber phase gratings. J Opt Soc Am A, 13, 296-313(1996).

    [65] KS Lee, T Erdogan. Fiber mode coupling in transmissive and reflective tilted fiber gratings. Appl Opt, 39, 1394-1404(2000).

    [66] SC Kang, SY Kim, SB Lee, SW Kwon, SS Choi, et al. Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator. IEEE Photonics Technol Lett, 10, 1461-1463(1998).

    [67] G Laffont, P Ferdinand, Technology. Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry. Meas Sci Technol, 12, 765-770(2001).

    [68] YY Shevchenko, J Albert. Plasmon resonances in gold-coated tilted fiber Bragg gratings. Opt Lett, 32, 211-213(2007).

    [69] E Chehura, SW James, RP Tatam. Temperature and strain discrimination using a single tilted fibre Bragg grating. Opt Commun, 275, 344-347(2007).

    [70] B Zhou, AP Zhang, SL He, BB Gu. Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section. IEEE Photonics J, 2, 152-157(2010).

    [71] R Helan, Jr Urban, B Mikel, FU Sr. Preparation and measurement of TFBG based vibration sensor. Proc SPIE, 92864, 92864D(2014).

    [72] YH Huang, TA Guo, C Lu, HY Tam. Vcsel-based tilted fiber grating vibration sensing system. IEEE Photonics Technol Lett, 22, 1235-1237(2010).

    [73] LY Shao, LY Xiong, CK Chen, A Laronche, J Albert. Directional bend sensor based on re-grown tilted fiber Bragg grating. J Lightwave Technol, 28, 2681-2687(2010).

    [74] LY Shao, J Albert. Compact fiber-optic vector inclinometer. Opt Lett, 35, 1034-1036(2010).

    [75] N Basumallick, I Chatterjee, P Biswas, K Dasgupta, S Bandyopadhyay. Fiber Bragg grating accelerometer with enhanced sensitivity. Sens Actuat A-Phys, 173, 108-115(2012).

    [76] N Basumallick, P Biswas, K Dasgupta, S Bandyopadhyay. Design optimization of fiber Bragg grating accelerometer for maximum sensitivity. Sens Actuat A-Phys, 194, 31-39(2013).

    [77] MM Khan, N Panwar, R Dhawan. Modified cantilever beam shaped FBG based accelerometer with self temperature compensation. Sens Actuat A-Phys, 205, 79-85(2014).

    [78] QP Liu, XG Qiao, ZA Jia, HW Fu, H Gao, et al. Large frequency range and high sensitivity fiber Bragg grating accelerometer based on double diaphragms. IEEE Sens J, 14, 1499-1504(2014).

    [79] QP Liu, XG Qiao, JL Zhao, ZA Jia, H Gao, et al. Novel fiber Bragg grating accelerometer based on diaphragm. IEEE Sens J, 12, 3000-3004(2012).

    [80] YN Zhu, P Shum, C Lu, BM Lacquet, PL Swart, et al. Temperature-insensitive fiber Bragg grating accelerometer. IEEE Photonics Technol Lett, 15, 1437-1439(2003).

    [81] WJ Zhou, XY Dong, CY Shen, CL Zhao, CC Chan, et al. Temperature-independent vibration sensor with a fiber bragg grating. Microw Opt Technol Lett, 52, 2282-2285(2010).

    [82] MD Todd, GA Johnson, BA Althouse, ST Vohra. Flexural beam-based fiber Bragg grating accelerometers. IEEE Photonics Technol Lett, 10, 1605-1607(1998).

    [83] N Gutiérrez, P Galvín, F Lasagni. Low weight additive manufacturing FBG accelerometer: design, characterization and testing. Measurement, 117, 295-303(2018).

    [84] K Li, GY Liu, YQ Li, J Yang, WL Ma. Ultra-small fiber bragg grating accelerometer. Appl Sci, 9, 2707(2019).

    [85] L Wei, DZ Jiang, LL Yu, HC Li, Z Liu. A novel miniaturized fiber bragg grating vibration sensor. IEEE Sens J, 19, 11932-11940(2019).

    [86] AS Gerges, TP Newson, DA Jackson. Practical fiber-optic-based submicro-g accelerometer free from source and environmental perturbations. Appl Sci, 14, 1155-1157(1989).

    [87] M Stephens. A sensitive interferometric accelerometer. Rev Sci Instrum, 64, 2612-2614(1993).

    [88] DH Wang, PG Jia. Fiber optic extrinsic Fabry-Perot accelerometer using laser emission frequency modulated phase generated carrier demodulation scheme. Opt Eng, 52, 055004(2013).

    [89] AS Gerges, TP Newson, JDC Jones, DA Jackson. High-sensitivity fiber-optic accelerometer. Opt Lett, 14, 251-253(1989).

    [90] QA Lin, LH Chen, S Li, X Wu. A high-resolution fiber optic accelerometer based on intracavity phase-generated carrier (PGC) modulation. Meas Sci Technology, 22, 015303(2011).

    [91] B Yu, AB Wang, GR Pickrell. Analysis of fiber Fabry-Pérot interferometric sensors using low-coherence light sources. J Lightwave Technol, 24, 1758-1767(2006).

    [92] JJ Guo, CX Yang. Non-contact fiber vibration sensor based on intracavity modulation of an extrinsic Fabry-Perot interferometer. IEEE Sens J, 15, 7229-7233(2015).

    [93] B Liu, J Lin, H Liu, Y Ma, L Yan, et al. Diaphragm based long cavity Fabry-Perot fiber acoustic sensor using phase generated carrier. Opt Commun, 382, 514-518(2017).

    [94] PG Jia, DH Wang. Temperature-compensated fiber optic Fabry-Perot accelerometer based on the feedback control of the Fabry-Perot cavity length. Chin Opt Lett, 11, 8-12(2013).

    [95] XD Wang, BQ Li, ZX Xiao, SH Lee, H Roman, et al. An ultra-sensitive optical MEMS sensor for partial discharge detection. J Micromech Microeng, 15, 521-527(2005).

    [96] E Davies, DS George, MC Gower, AS Holmes. MEMS Fabry-Pérot optical accelerometer employing mechanical amplification via a V-beam structure. Sens Actuat A-Phys, 215, 22-29(2014).

    [97] ZH Zhao, ZH Yu, K Chen, QX Yu. A fiber-optic fabry-perot accelerometer based on high-speed white light interferometry demodulation. J Lightwave Technol, 36, 1562-1567(2018).

    [98] TJ Kippenberg, KJ Vahala. Cavity optomechanics: back-action at the mesoscale. Science, 321, 1172-1176(2008).

    [99] M Aspelmeyer, TJ Kippenberg, F Marquardt. Cavity optomechanics. Rev Mod Phys, 86, 1391-1452(2014).

    [100] [100] Quantum Optomechanics. (CRC Press, Boca Raton, 2015).

    [101] P Meystre. A short walk through quantum optomechanics. Ann Phys, 525, 215-233(2013).

    [102] [102] SCIENCE CHINA Physics, Mechanics & Astronomy 58, 1–6 (2015). DOI: 10.1007/s11433-015-5657-8

    [103] FG Cervantes, L Kumanchik, J Pratt, JM Taylor. High sensitivity optomechanical reference accelerometer over 10 kHz. Appl Phys Lett, 104, 221111(2014).

    [104] [104] Proceedings of 2016 IEEE International Symposium on Inertial Sensors and Systems 105–108 (IEEE, 2016); http://doi.org/10.1109/ISISS.2016.7435556.

    [105] O Gerberding, FG Cervantes, J Melcher, JR Pratt, JM Taylor. Optomechanical reference accelerometer. Metrologia, 52, 654-665(2015).

    [106] J Li, JN Sun, MM Miliar, FZ Dong, RRJ Maier, et al. Two-dimensional optical fibre cantilever accelerometer. Proc SPIE, 96341, 96341E(2015).

    [107] B Liu, Z Zhong, J Lin, X Wang, L Liu, et al. Extrinsic Fabry-Perot cantilever accelerometer based on micromachined 45° angled fiber. J Lightwave Technol, 36, 2196-2203(2018).

    [108] J Han, WT Zhang, ZG Wang, BC Sun, BH Xu, et al. Fiber optical accelerometer based on 45 degrees Fabry-Perot cavity. Proc SPIE, 9274, 927418(2014).

    [109] N Zeng, CZ Shi, M Zhang, LW Wang, YB Liao, et al. A 3-component fiber-optic accelerometer for well logging. Opt Commun, 234, 153-162(2004).

    [110] [110] Proceedings of the 15th Optical Fiber Sensors Conference Technical Digest. OFS 2002(Cat. No.02EX533) 95–98 (IEEE, 2002); http://doi.org/10.1109/OFS.2002.1000510.

    [111] R Amarasinghe, DV Dao, T Toriyama, S Sugiyama. Design and fabrication of a miniaturized six-degree-of-freedom piezoresistive accelerometer. J Micromech Microeng, 15, 1745-1753(2005).

    [112] R Amarasinghe, DV Dao, T Toriyama, S Sugiyama. Development of miniaturized 6-axis accelerometer utilizing piezoresistive sensing elements. Sens Actuat A-Phys, 134, 310-320(2007).

    [113] JS Sirkis, DD Brennan, MA Putman, TA Berkoff, AD Kersey, et al. In-line fiber etalon for strain measurement. Opt Lett, 18, 1973-1975(1993).

    [114] WL Liu, WZ Li, JP Yao. Real-time interrogation of a linearly chirped fiber Bragg grating sensor for simultaneous measurement of strain and temperature. IEEE Photonics Technol Lett, 23, 1340-1342(2011).

    [115] J Echevarria, A Quintela, C Jauregui, JM Lopez-Higuera. Uniform fiber Bragg grating first-and second-order diffraction wavelength experimental characterization for strain-temperature discrimination. IEEE Photonics Technol Lett, 13, 696-698(2001).

    [116] LY Shao, XY Dong, AP Zhang, HY Tam, SL He. High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser. IEEE Photonics Technol Lett, 19, 1598-1600(2007).

    [117] QZ Rong, H Sun, XG Qiao, J Zhang, ML Hu, et al. A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer. J Opt, 14, 045002(2012).

    [118] A Fender, WN MacPherson, RRJ Maier, JS Barton, DS George, et al. Two-axis temperature-insensitive accelerometer based on multicore fiber Bragg gratings. IEEE Sens J, 8, 1292-1298(2008).

    [119] CL Zhao, X Yang, M Demokan, W Jin. Simultaneous temperature and refractive index measurements using a 3°slanted multimode fiber Bragg grating. J. Lightwave Technol, 24, 879-883(2006).

    [120] Q Zhang, T Zhu, YS Hou, KS Chiang. All-fiber vibration sensor based on a Fabry–Perot interferometer and a microstructure beam. J Opt Soc Am B, 30, 1211-1215(2013).

    [121] G Gagliardi, M Salza, P Ferraro, Natale De, Maio Di, et al. Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications. Meas Sci Technol, 19, 085306(2008).

    [122] H Tsuda. Fiber Bragg grating vibration-sensing system, insensitive to Bragg wavelength and employing fiber ring laser. Opt Lett, 35, 2349-2351(2010).

    [123] WY Ma, Y Jiang, H Zhang, LC Zhang, J Hu, et al. Miniature on-fiber extrinsic Fabry-Perot interferometric vibration sensors based on micro-cantilever beam. Nanotechnol Rev, 8, 293-298(2019).

    [124] YG Lee, DH Kim, CG Kim. Performance of a single reflective grating-based fiber optic accelerometer. Meas Sci Technol, 23, 045101(2012).

    [125] MS Ferreira, L Coelho, K Schuster, J Kobelke, JL Santos, et al. Fabry–Perot cavity based on a diaphragm-free hollow-core silica tube. Opt Lett, 36, 4029-4031(2011).

    [126] GZ Xiao, A Adnet, ZY Zhang, FG Sun, CP Grover. Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor. Sens Actuat A-Phys, 118, 177-182(2005).

    [127] R Amarasinghe, DV Dao, T Toriyama, S Sugiyama. Simulation, fabrication and characterization of a three-axis piezoresistive accelerometer. Smart Mater Struct, 15, 1691-1699(2006).

    [128] YJ Rao, PJ Henderson, DA Jackson, L Zhang, I Bennion. Simultaneous strain, temperature and vibration measurement using a multiplexed in-fibre-Bragg-grating/fibre-Fabry-Perot sensor system. Electron Lett, 33, 2063-2064(1997).

    [129] YL Yu, H Tam, W Chung, MS Demokan. Fiber Bragg grating sensor for simultaneous measurement of displacement and temperature. Opt Lett, 25, 1141-1143(2000).

    [130] PG Jia, DH Wang, G Yuan, XY Jiang. An active temperature compensated fiber-optic Fabry-Perot accelerometer system for simultaneous measurement of vibration and temperature. IEEE Sens J, 13, 2334-2340(2013).

    [131] JM Corres, J Bravo, FJ Arregui, IR Matias. Vibration monitoring in electrical engines using an in-line fiber etalon. Sens Actuat A-Phys, 132, 506-515(2006).

    [132] T Ke, T Zhu, YJ Rao, M Deng. Accelerometer based on all-fiber Fabry-Pérot interferometer formed by hollow-core photonic crystal fiber. Microw Opt Technol Lett, 52, 2531-2535(2010).

    [133] ZG Zang, WX Yang. Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber. J Appl Phys, 109, 103106(2011).

    [134] ZJ Zang. Numerical analysis of optical bistability based on fiber Bragg grating cavity containing a high nonlinearity doped-fiber. Opt Commun, 285, 521-526(2012).

    [135] ZG Zang, YJ Zhang. Low-switching power (< 45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair. J Mod Opt, 59, 161-165(2012).

    [136] JC Xu, XW Wang, KL Cooper, AB Wang. Miniature all-silica fiber optic pressure and acoustic sensors. Opt Lett, 30, 3269-3271(2005).

    [137] DH Wang, SJ Wang, PG Jia. In-line silica capillary tube all-silica fiber-optic Fabry–Perot interferometric sensor for detecting high intensity focused ultrasound fields. Opt Lett, 37, 2046-2048(2012).

    [138] [138] Proceedings of the 24th International Conference on Microelectronics 231–234 (IEEE, 2004); http://doi.org/10.1109/ICMEL.2004.1314602.

    [139] K Huang, M Yu, L Cheng, J Liu, LQ Cao. A proposal for an optical MEMS accelerometer with high sensitivity based on wavelength modulation system. J Lightwave Technol, 37, 5474-5478(2019).

    [140] K Huang, LQ Cao, PC Zhai, PY Liu, L Cheng, et al. High sensitivity sensing system theoretical research base on waveguide-nano DBRs one dimensional photonic crystal microstructure. Opt Commun, 470, 125392(2020).

    [141] A Sheikhaleh, K Abedi, K Jafari. An Optical MEMS Accelerometer based on a two-dimensional photonic crystal add-drop filter. J Lightwave Technol, 35, 3029-3034(2017).

    [142] A Sheikhaleh, K Abedi, K Jafari. A proposal for an optical mems accelerometer relied on wavelength modulation with one dimensional photonic crystal. J Lightwave Technol, 34, 5244-5249(2016).

    [143] S Olyaee, M Azizi. Micro-displacement sensor based on high sensitivity photonic crystal. Photonic Sens, 4, 220-224(2014).

    [144] RH Ritchie, AL Marusak. Surface plasmon dispersion relation for an electron gas. Surf Sci, 4, 234-240(1966).

    [145] TW Ebbesen, HJ Lezec, HF Ghaemi, T Thio, PA Wolff. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667-669(1998).

    [146] A Nemati, Q Wang, MH Hong, JH Teng. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron Adv, 1, 180009(2018).

    [147] DW Carr, JP Sullivan, TA Friedmann. Laterally deformable nanomechanical zeroth-order gratings: anomalous diffraction studied by rigorous coupled-wave analysis. Opt Lett, 28, 1636-1638(2003).

    [148] BEN Keeler, GR Bogart, DW Carr. Laterally deformable optical NEMS grating transducers for inertial sensing applications. Proc SPIE, 5592, 306-312(2005).

    [149] U Krishnamoorthy, III Olsson, GR Bogart, MS Baker, DW Carr, et al. In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor. Sens Actuat A-Phys, 145-146, 283-290(2008).

    [150] AG Krause, M Winger, TD Blasius, Q Lin, O Painter. A high-resolution microchip optomechanical accelerometer. Nat Photonics, 6, 768-772(2012).

    [151] M Eichenfield, R Camacho, J Chan, KJ Vahala, O Painter. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature, 459, 550-555(2009).

    [152] Q Lin, J Rosenberg, XS Jiang, KJ Vahala, O Painter. Mechanical oscillation and cooling actuated by the optical gradient force. Phys Rev Lett, 103, 103601(2009).

    [153] AH Safavi-Naeini, S Gröblacher, JT Hill, J Chan, M Aspelmeyer, et al. Squeezed light from a silicon micromechanical resonator. Nature, 500, 185-189(2013).

    [154] PH Kim, BD Hauer, C Doolin, F Souris, JP Davis. Approaching the standard quantum limit of mechanical torque sensing. Nat Commun, 7, 13165(2016).

    [155] Z Zobenica, der van, M Petruzzella, F Pagliano, R Leijssen, et al. Integrated nano-opto-electro-mechanical sensor for spectrometry and nanometrology. Nat Commun, 8, 2216(2017).

    [156] YJ Huang, Flores Flor, Y Li, WT Wang, D Wang, et al. A chip-scale oscillation-mode optomechanical inertial sensor near the thermodynamical limits. Laser Photonics Rev, 14, 1800329(2020).

    [157] AAA Rogers, S Kedia, S Samson, S Bhansali. Verification of evanescent coupling from subwavelength grating pairs. Appl Phys B, 105, 833-837(2011).

    [158] BY Yao, LS Feng, X Wang, MH Liu, Z Zhou, et al. Design of out-of-plane MOEMS accelerometer with subwavelength gratings. IEEE Photonics Technol Lett, 26, 1027-1030(2014).

    [159] QB Lu, J Bai, KW Wang, PW Chen, WD Fang, et al. Single Chip-based nano-optomechanical accelerometer based on subwavelength grating pair and rotated serpentine springs. Sensors, 18, 2036(2018).

    [160] MJ Snadden, JM McGuirk, P Bouyer, KG Haritos, MA Kasevich. Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer. Phys Rev Lett, 81, 971-974(1998).

    [161] A Peters, KY Chung, S Chu. High-precision gravity measurements using atom interferometry. Metrologia, 38, 25-61(2001).

    [162] JM McGuirk, GT Foster, JB Fixler, MJ Snadden, MA Kasevich. Sensitive absolute-gravity gradiometry using atom interferometry. Phys Rev A, 65, 033608(2002).

    [163] T Kovachy, P Asenbaum, C Overstreet, CA Donnelly, SM Dickerson, et al. Quantum superposition at the half-metre scale. Nature, 528, 530-533(2015).

    [164] F Armata, L Latmiral, ADK Plato, MS Kim. Quantum limits to gravity estimation with optomechanics. Phys Rev A, 96, 043824(2017).

    [165] S Qvarfort, A Serafini, PF Barker, S Bose. Gravimetry through non-linear optomechanics. Nat Commun, 9, 3690(2018).

    [166] A Arvanitaki, AA Geraci. Detecting high-frequency gravitational waves with optically levitated sensors. Phys Rev Lett, 110, 071105(2013).

    [167] K Gietka, F Mivehvar, H Ritsch. Supersolid-based gravimeter in a ring cavity. Phys Rev Lett, 122, 190801(2019).

    [168] TP Purdy, RW Peterson, CA Regal. Observation of radiation pressure shot noise on a macroscopic object. Science, 339, 801-804(2013).

    [169] S Abend, M Gebbe, M Gersemann, H Ahlers, H Müntinga, et al. Atom-chip fountain gravimeter. Phys Rev Lett, 117, 203003(2016).

    [170] P Cheiney, L Fouché, S Templier, F Napolitano, B Battelier, et al. Navigation-compatible hybrid quantum accelerometer using a kalman filter. Phys Rev Appl, 10, 034030(2018).

    [171] M Metcalfe. Applications of cavity optomechanics. Appl Phys Rev, 1, 031105(2014).

    Tools

    Get Citation

    Copy Citation Text

    Qianbo Lu, Yinan Wang, Xiaoxu Wang, Yuan Yao, Xuewen Wang, Wei Huang. Review of micromachined optical accelerometers: from mg to sub-μg[J]. Opto-Electronic Advances, 2021, 4(3): 200045-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Review

    Received: Aug. 17, 2020

    Accepted: Sep. 23, 2020

    Published Online: Aug. 24, 2021

    The Author Email: Lu Qianbo (iamwhuang@nwpu.edu.cn)

    DOI:10.29026/oea.2021.200045

    Topics