Infrared and Laser Engineering, Volume. 52, Issue 5, 20220691(2023)
Review of the progress of Aeolus space-borne wind measurement lidar
[2] [2] Wld Meteological ganization (WMO). Database of User Requirements Satellite System Capabilities[M]Preliminary Statement of Guidance Regarding How Well Satellite Capabilities Meet WMO User Requirements in Several Application Areas. Geneva, Switzerl: WMO, 1998.
[3] [3] Lngmann P, Fuchs J. Global Wind Profile Measurements f Climate NWP[M]The Four Cidate Earth Expler Ce MissionsAtmospheric Dynamics. Nodwijk: ESA Publications Division, 1999.
[4] [4] Huffaker R M. Wind Fields[M]Feasibility Study of Satellitebne Lidar Global Wind Moniting System. Colado: NOAA Technical Memum, 1978.
[7] [7] Phillips M W, Schnal D L, Hale C P, et al. Design development of the SPARCLE coherent lidar transceiver[C]Proc SPIE, 1999, 3707: 256267.
[8] [8] Kavaya M J, Spiers G D, Frehlich R G. Potential pitfalls related to spacebased lidar remote sensing of the Earth with an emphasis on wind measurement[C]Lidar Remote Sensing f Industry Environment Moniting, 2001, 4153: 385393.
[9] [9] Endemann M. The ADMAeolus mission[C]International Conference on Space OpticsICSO 2006, 2006, 10567: 1056701.
[10] [10] Endemann M. ADMAeolus: the first spacebne wind lidar[C]Lidar Remote Sensing f Environmental Moniting VII, 2006, 6409: 64090G.
[11] [11] Mançais D, Fabre F. ALADIN: the first european LIDAR in space[C]International Society f Optics PhotonicsICSO 2004, 2017, 10568: 1056802.
[12] [12] Dur Y, Meynart R, Endemann M. Manufacturing of an airbne demonstrat of ALADIN, the direct detection Doppler wind lidar f ADMAeolus[C]Technigues, Measurements f Atmospheric Remote Sensing, 2005, 5984: 598401.
[13] [13] Mançais D, Fabre F, Endemann M. ALADIN Doppler wind lidar: recent advances[C]Technigues, Measurements f Atmospheric Remote Sensing, 2007, 6750: 675014.
[15] [15] Paffrath U. Perfmance assessment of the Aeolus Doppler wind lidar prototype[D]. Munich: Mhinenwesen der Technischen Universität München, 2006.
[16] [16] Marksteiner U, Reitebuch O, Rahm S, et al. Airbne directdetection coherent wind lidar measurements along the east coast of Greenl in 2009 suppting ESA''s Aeolus mission[C]Lidar Technologies, Techniques, Measurements f Atmospheric Remote Sensing VII, 2011, 8182: 81820J.
[17] [17] Reitebuch O, Lemmerz C, Lux O, et al. WindVal final rept FR joint DLRESANASA wind validation f aeolus[R]. German: DLR, 2017.
[18] [18] Reitebuch O, Lux O, Lemmerz C, et al. WindVal II final rept (FR) wind validation II f Aeolus[R]. German: DLR, 2018.
[22] [22] Reitebuch O, Huber D, Nikolaus I. ADMAeolus algithm theetical basis document ATBD level 1B Products[R]. German: DLR, 2018.
[24] [24] Davies A, Marshall J, Schillinger M, et al. Aeolus platfm & instrument 3 years in space[EBOL]. (20220328) [20220914]. https:az659834.vo.msecnd.eventsairwesteuprodproductionnikalpublic08bffc4f4a3a41b1b104bfd17602217d.
[27] [27] Cosentino A, Mondello A, Sapia A, et al. High energy, single frequency, tunable laser source operating in burst mode f space based lidar applications[C]International Conference on Space OpticsICSO 2004, 2017, 10568: 1058617.
[28] [28] Lars I. Aeolus: A scientific success due to excellent collaboration[EBOL]. (20220328) [20220914]. https:az659834.vo.msecnd.eventsairwesteuprodproductionnikalpublic8197246857c34bbc96b41bb85a3842a9.
[30] [30] Fehr T, Amiridis V, von Bismarck J, et al. Aeolus calibration, validation science postlaunch campaigns[C]EGU General Assembly, 2021: EGU2112562.
[32] [32] Reitebuch O, Lemmerz C, Lux O, et al. Initial assessment of the perfmance of the first wind lidar in space on Aeolus[C]The 29th International Laser Radar Conference (ILRC 29), 2020, 237: 01010.
[35] [35] Lemmerz C, Lux O, Witschas B. Aeolus validation with the 2µm coherent the ALADIN airbne demonstrat Doppler wind lidars onboard the DLR falcon[EBOL]. (20201104) [20220919]. https:elib.dlr.de1392621Lemmerz_Christian_al_AeolusAirbneValidation_20201104%20%20Aeolus%20CalVal%20WS.pdf.
[36] [36] Baars H, Alexer G, Winger U. First results from the German CalVal activities f Aeolus[C]The 29th International Laser Radar Conference (ILRC 29), 2020, 237: 01008.
[38] [38] Isabell K, Christian L, Oliver L. Assessment of the Aeolus perfmance bias crectionresults from the Aeolus DISC [EBOL]. (20221102) [20220916]. https:www.box.comsm3kjp540otwm17lOliver_Reitebuch_al_AssessmentAeolusDISC.pdfdl=0.
[39] [39] de Kloe J, Rennie M, Marseille G J, et al. Recent planned improvements to the Aeolus L2B wind processing software[EBOL]. (20221102) [20220916]. https:www.box.coms2otx3zyqem9q7qqJos_de_Kloe_al_Recent__Planned_Improvements.pdfdl=0.
[40] [40] Albert H, Aurélien P. First results of the Strateole2 longduration balloon campaign in the tropical lower stratosphere[EBOL]. (20221103) [20220916]. https:www.box.coms7btlx4q6hg284t1Albert_Hertzog_al_Strateole_2.pdfdl=0.
[41] [41] Isabell K, Christian L, Oliver L. Assessment of the Aeolus perfmance bias crection – results from the Aeolus DISC [EBOL]. (20221102) [20220916]. https:www.box.comsm3 kjp540 otwm17 lOliver_Reitebuch_al_AssessmentAeolusDISC.pdfdl=0.
[42] [42] Jos de K, GertJan M, Fabian W, et al. NWP moniting of L2 B product quality at ECMWF[EBOL]. (20220328) [20220915]. https:az659834.vo.msecnd.eventsairwesteuprodproductionnikalpublicf15539060d4c46b9b8fff61d8c7a303a.
[44] [44] Holger B, Henriette G, Dietrich A. The perfmance of Aeolus L2A products in the vicinity of mineral dust[EBOL]. (20220329) [20220915]. https:az659834.vo.msecnd.eventsairwesteuprodproductionnikalpublic625816426a364a20b5f3900249928361.
[46] [46] Ishii S, Iwai H, Aoki M, et al. Validation experiment f Aeolus Level 2A 2B products in Japan[EBOL]. (20220329) [20220915]. https:az659834.vo.msecnd.eventsairwesteuprodproductionnikalpublic2a3c58e101dd4890aeef7d35819143e9.
[49] [49] Gago J A, Costa M J, Ara J A B. Validation of ADMAeolus particle backscatter retrievals under SCA algithm over 21 months at Spain Ptugal [EBOL]. (20221103) [20220916]. https:www.box.comswu1fcf52nfs51ykJesus_AbrilGago_al_ValidationOfADMAeolus.pdfdl=0.
[50] [50] Holger B, Frithjof E, Ulla W. Validation of Aeolus L2A data with groundbased lidar in Israel f the aerosoloptimized rangebin setting in the Eastern Mediterranean (MARS) [EBOL]. (20221103) [20220916]. https:www.box.comsrli4 qvybbzqg1 x8Holger_Baars_al_L2 A_MARS.pdfdl=0.
[53] [53] Zhang F, Xue H, Liu Z, et al. High perfmance Chinamade coherent Doppler wind lidar prototype[C]Proceedings of SPIE, 2011, 8192: 81920Y.
[54] [54] Banyard T, Wright C, Hindley N, et al. Longitudinal variations of tropical winds in the UTLS: Aeolus strateole measurements of equatial waves the walker circulation[R]. Austria: EGU, 2023.
[55] [55] Gerhard A, Alexer C. The needs f wind observations in the global observing system [EBOL]. (20221102) [20220916]. https:www.box.comstsce0i84pa9f1k9Gerhard_Adrian_wind_observations.pdfdl=0.
[57] [57] Alexer C, Deutscher W. Validation impact assessment of Aeolus observations in the DWD modelling system [EBOL]. (20221102) [20220916]. https:www.box.comsulpv2b0l3c08dlmalexer_cress_al_validation__impact.pdfdl=0.
[58] [58] Josef A. Earth expler Aeolus [EBOL]. (20221102) [20220916]. https:www.box.comso5inxg0dda4t3y8J.%20Aschbacher%20Aeolus%20Wkshop.pdfdl=0.
[59] [59] National Centre f Medium Range Weather Fecasting. Impact of Aeolus HLOS winds on the simulation of Nisarga severe cyclonic stm over the Arabian sea[EBOL]. (20221102) [20220916]. https:www.box.comsapjmnv7z6 daucvjGibies_Gege_al_Impact_of_Aeolus_HLOS_Wind_on_Nisarga.pdfdl=0.
[60] [60] Peter K, Maurus B, reas H, et al. Equatial waves as a key element f weather prediction in the tropics[EBOL]. (20221102) [20220916]. https:www.box.coms9mz0w8v4wjj6eb9Knippertzetal_ESA_Aeolus.pdfdl=0.
[61] [61] Preusse P, Ern M. Fcing of the quasibiennial oscillation by different wave modes [EBOL]. (20221105) [20220916]. https:www.box.comszn5u4jzy7nbxlkhpreusse_ern_esa_aeolus_QBO_2020.pdfdl=0.
[62] [62] Žagar N. Equatial wave dynamics: initial insights from Aeolus [EBOL]. (20221104) [20220916]. https:www.box.coms48qtpyfgfbai8 idN%20Zagar_Aeolus_CALVAL_3Nov2020_.pdfdl=0.
[63] [63] ESA. Satellites track unusual Saharan dust plume[EBOL]. (20200709) [20220915]. https:www.esa.intApplicationsObserving_the_EarthSatellites_track_unusual_Saharan_dust_plume.
[64] [64] Antonis G, Gegios P, Eleni D, et al. Assessing the impact of Aeolus wind data assimilation on the Saharan dust simulations in the framewk of the JATAC campaign[C]EGU General Assembly 2022, 2022, EGU22: 3586.
[66] [66] Wernham D, Helier A, Mason G. Status of the AEOLUS2 predevelopment activities[EBOL]. (20220329) [20220915]. https:az659834.vo.msecnd.eventsairwesteuprodproductionnikalpublicdbbbee3889044d43b69d5a68ed9b1c8d.
[67] [67] Wernham D, Heliere A, Mason G, et al. Aeolus2 mission predevelopment status[C]2021 IEEE International Geoscience Remote Sensing Symposium IGARSS, 2021, 2021: 767770.
[71] Z Q Zhong, D S Sun, B X Wang, et al. Doppler wind lidar based on Fabry-Perot etalon. Infrared and Laser Engineering, 35, 687-690(2006).
[75] [75] Wu Yanwei. Simulation design data processing f the satellite hybrid Doppler wind lidar[D]. Beijing: Beijing Institute of Technology, 2018. (in Chinese)
[80] [80] Singh U K, Kavaya M J, Yu J R, et al. Development of 2micron Doppler wind wind lidar f NASA 3D winds mission[C]International Conferenceon Space Optical System Applications 2014, 2014: S51.
[83] [83] Schillinger M , Mancais D , Fabre F, et al. ALADIN: the lidar instrument f the AEOLUS mission[C]International Society f Optics Photonics, 2003, 4118: 4051.
Get Citation
Copy Citation Text
Zhongyu Hu, Lingbing Bu. Review of the progress of Aeolus space-borne wind measurement lidar[J]. Infrared and Laser Engineering, 2023, 52(5): 20220691
Category: Laser & laser optics
Received: Sep. 26, 2022
Accepted: --
Published Online: Jul. 4, 2023
The Author Email: