Acta Photonica Sinica, Volume. 52, Issue 10, 1052401(2023)
Progress in Highly Sensitive Sensing Based on Spoof Localized Surface Plasmons(Invited)
[1] X ZHANG, W Y CUI, Y LEI et al. Spoof localized surface plasmons for sensing applications. Advanced Materials Technologies, 6, 2000863(2021).
[2] A PORS, E MORENO, L MARTIN-MORENO et al. Localized spoof plasmons arise while texturing closed surfaces. Physical Review Letters, 108, 223905(2012).
[3] P A HUIDOBRO, X SHEN, J CUERDA et al. Magnetic localized surface plasmons. Physical Review X, 4, 021003(2014).
[4] X SHEN, T J CUI. Ultrathin plasmonic metamaterial for spoof localized surface plasmons. Laser & Photonics Reviews, 8, 137-145(2014).
[5] X R ZHANG, D BAO, J F LIU et al. Wide-bandpass filtering due to multipole resonances of spoof localized surface plasmons. Annalen Der Physik, 530, 1800207(2018).
[6] Y Z SHEN, N CHEN, G Q DONG et al. Manipulating multipole resonances in spoof localized surface plasmons for wideband filtering. Optics Letters, 46, 1550-1553(2021).
[7] Z LIAO, G Q LUO, X Y WU et al. A horizontally polarized omnidirectional antenna based on spoof surface plasmons. Frontiers in Physics, 8, 53(2020).
[8] Z Z CHEN, M WANG, D F GUAN et al. Wideband filtering antenna fed through hybrid substrate integrated waveguide and spoof localized surface plasmon structure. IEEE Transactions on Antennas and Propagation, 70, 3812-3817(2022).
[9] F J GARCIA-VIDAL, A I FERNANDEZ-DOMINGUEZ, L MARTIN-MORENO et al. Spoof surface plasmon photonics. Review of Modern Physics, 94, 025004(2022).
[10] J SU, A F GOLDBERG, B M STOLTZ. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light: Science & Applications, 5, e16001(2016).
[11] A M ARMANI, R P KULKARNI, S E FRASER et al. Label-free, single-molecule detection with optical microcavities. Science, 317, 783-787(2007).
[12] X R ZHANG, T J CUI. Deep-subwavelength and high-Q trapped mode induced by symmetry-broken in toroidal plasmonic resonator. IEEE Transactions on Antennas and Propagation, 69, 2122-2129(2021).
[13] X ZHANG, T J CUI. Contactless glucose sensing at sub‐micromole level using a deep‐subwavelength decimeter‐wave plasmonic resonator. Laser & Photonics Reviews, 16, 2200221(2022).
[14] Q J ZHOU, Y Y FU, J Q LIU et al. Plasmonic bound states in the continuum in compact nanostructures. Advanced Optical Materials, 10, 2201590(2022).
[15] S Q LI, C H DU, L Z YIN et al. Quasi-bound states in the continuum of localized spoof surface plasmons. ACS Photonics, 9, 3333-3340(2022).
[16] T J DAVIS, D JANOSCHKA, P DREHER et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution. Science, 368, eaba6415(2020).
[17] Y SHEN, E C MARTINEZ, C ROSALES-GUZMAN. Generation of optical skyrmions with tunable topological textures. ACS Photonics, 9, 296-303(2022).
[18] Z L DENG, T SHI, A KRASNOK et al. Observation of localized magnetic plasmon skyrmions. Nature Communications, 13, 8(2022).
[19] J YANG, X Z ZHENG, J F WANG et al. Symmetry-protected spoof localized surface plasmonic skyrmion. Laser & Photonics Reviews, 16, 2200007(2022).
[20] J YANG, X Z ZHENG, J F WANG et al. Customizing the topological charges of vortex modes by exploiting symmetry principles. Laser & Photonics Reviews, 16, 2100373(2022).
[21] D K ARMANI, T J KIPPENBERG, S M SPILLANE et al. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).
[22] K J VAHALA. Optical microcavities. Nature, 424, 839-846(2003).
[23] W J CHEN, S K OZDEMIR, G M ZHAO et al. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).
[24] B PENG, S K OZDEMIR, M LIERTZER et al. Chiral modes and directional lasing at exceptional points. Proceedings of the National Academy of Sciences of the United States of America, 113, 6845-6850(2016).
[25] H Y JEONG, LIM Y , J HAN et al. Electrical addressing of exceptional points in compact plasmonic structures. Nanophotonics, 12, 2029-2039(2023).
[26] Y M YANG, X R XIE, Y Z LI et al. Radiative anti-parity-time plasmonics. Nature Communications, 13, 7678(2022).
[27] P COULLET, L GIL, F ROCCA. Optical vortices. Optics Communications, 73, 403-408(1989).
[28] L ALLEN, M W BEIJERSBERGEN, R J C SPREEUW et al. Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 45, 8185-8189(1992).
[29] Y J SHEN, X J WANG, Z W XIE et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Science & Applications, 8, 90(2019).
[30] M V BERRY, W LIU. No general relation between phase vortices and orbital angular momentum. Journal of Physics a-Mathematical and Theoretical, 55, 374001(2022).
[31] B THIDE, H THEN, J SJOHOLM et al. Utilization of photon orbital angular momentum in the low-frequency radio domain. Physical Review Letters, 99, 087701(2007).
[32] F TAMBURINI, E MARI, A SPONSELLI et al. Encoding many channels on the same frequency through radio vorticity: first experimental test. New Journal of Physics, 14, 033001(2012).
[33] A TENNANT, B ALLEN. Generation of OAM radio waves using circular time-switched array antenna. Electronics Letters, 48, 1365-1366(2012).
[34] L CHENG, W HONG, Z C HAO. Generation of electromagnetic waves with arbitrary orbital angular momentum modes. Scientific Reports, 4, 4814(2014).
[35] C PFEIFFER, A GRBIC. Controlling vector bessel beams with metasurfaces. Physical Review Applied, 2, 044012(2014).
[36] T ARIKAWA, T HIRAOKA, S MORIMOTO et al. Transfer of orbital angular momentum of light to plasmonic excitations in metamaterials. Science Advances, 6, eaay1977(2020).
[37] H SU, X SHEN, G SU et al. Efficient generation of microwave plasmonic vortices via a single deep-subwavelength meta-particle. Laser & Photonics Reviews, 12, 1800010(2018).
[38] Z LIAO, J N ZHOU, G Q LUO et al. Microwave-vortex-beam generation based on spoof-plasmon ring resonators. Physical Review Applied, 13, 054013(2020).
[39] Z LIAO, Y CHE, L LIU et al. Reconfigurable vector vortex beams using spoof surface plasmon ring resonators. IEEE Transactions on Antennas and Propagation, 70, 6795-6803(2022).
[40] X R ZHANG, X ZHAO, T J CUI. Microwave vortex transceiver system with continuous tunability using identical plasmonic resonators. Advanced Optical Materials, 10, 2201543(2022).
[41] M P J LAVERY, F C SPEIRITS, S M BARNETT et al. Detection of a spinning object using light's orbital angular momentum. Science, 341, 537-540(2013).
[42] Z L ZHOU, Y Q CHENG, K LIU et al. Rotational Doppler resolution of spinning target detection based on OAM beams. IEEE Sensors Letters, 3, 1-4(2019).
[43] M CROMB, G M GIBSON, E TONINELLI et al. Amplification of waves from a rotating body. Nature Physics, 16, 1069-1073(2020).
[44] X ZHANG, T J CUI. Single-particle dichroism using orbital angular momentum in a microwave plasmonic resonator. ACS Photonics, 7, 5291-5297(2020).
[45] Z GAO, F GAO, H Y XU et al. Localized spoof surface plasmons in textured open metal surfaces. Optics Letters, 41, 2181-2184(2016).
[46] J TAO, P TANG, S HE et al. Experimental demonstration of low-energy first-order hybridized plasmon resonances in origami metashells. Advanced Optical Materials, 2300841(2023).
[47] J H FU, W J WU, D W WANG et al. High-sensitivity microfluidic sensor based on quarter-mode interdigitated spoof plasmons. IEEE Sensors Journal, 22, 23888-23895(2022).
[48] X X GAO, B J CHEN, K M SHUM et al. Multifunctional terahertz spoof plasmonic devices. Advanced Materials Technologies, 8, 2202050(2023).
[49] O KAMESHKOV, V GERASIMOV, S KUZNETSOV. Sensing performance analysis of spiral metasurface utilizing phase spectra measurement technique. Photonics, 10, 243(2023).
[50] Z LIAO, S LIU, H F MA et al. Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies. Scientific Reports, 6, 27596(2016).
[51] L CHEN, N XU, L SINGH et al. Defect-induced fano resonances in corrugated plasmonic metamaterials. Advanced Optical Materials, 5, 1600960(2017).
[52] Z Y ZHAO, M J DU, C P JIANG et al. Terahertz inner and outer edge modes in a tetramer of strongly coupled spoof localized surface plasmons. Optics Letters, 48, 1343-1346(2023).
[53] M J DU, Z Y ZHAO, H QIN et al. Dual band symmetry-protected terahertz bound states in the continuum inside the spoof localized surface plasmon induced-transparency windows. Journal of Physics D-Applied Physics, 56, 045104(2023).
[54] J ZHOU, L CHEN, Q Y SUN et al. Terahertz on-chip sensing by exciting higher radial order spoof localized surface plasmons. Applied Physics Express, 13, 012014(2020).
[55] N PANDIT, R K JAISWAL, N P PATHAK. Towards development of a non-intrusive and label-free THz sensor for rapid detection of aqueous bio-samples using microfluidic approach. IEEE Trans Biomed Circuits Syst, 15, 91-101(2021).
[56] Z GAO, F GAO, Y ZHANG et al. Forward/backward switching of plasmonic wave propagation using sign-reversal coupling. Advanced Materials, 29, 1700018(2017).
[57] J ZHANG, Z LIAO, Y LUO et al. Spoof plasmon hybridization. Laser & Photonics Reviews, 11, 1600191(2017).
[58] F GAO, Z GAO, Y LUO et al. Invisibility dips of near-field energy transport in a spoof plasmonic metadimer. Advanced Functional Materials, 26, 8307-8312(2016).
[59] Z GAO, F GAO, Y M ZHANG et al. Deep-subwavelength magnetic-coupling-dominant interaction among magnetic localized surface plasmons. Physical Review B, 93, 195410(2016).
[60] X ZHANG, R T YAN, T J CUI. High-FoM resonance in single hybrid plasmonic resonator via electromagnetic modal interference. IEEE Transactions on Antennas and Propagation, 68, 6447-6451(2020).
[61] S LIU, Z XU, X YIN et al. High-Q-value classical electromagnetically induced transparency based on dipoles overlapping at spoof localized surface plasmons. Journal of the Optical Society of America B-Optical Physics, 38, 1156-1162(2021).
[62] S MOHAMMADI, K K ADHIKARI, M C JAIN et al. High-resolution, sensitivity-enhanced active resonator sensor using substrate-embedded channel for characterizing low-concentration liquid mixtures. IEEE Transactions on Microwave Theory and Techniques, 70, 576-586(2022).
[63] Y CUI, A J GE. A tunable high-Q microwave detector for on-column capillary liquid chromatography. IEEE Transactions on Instrumentation and Measurement, 69, 5978-5980(2020).
[64] J CAI, Y J ZHOU, Y ZHANG et al. Gain-assisted ultra-high-Q spoof plasmonic resonator for the sensing of polar liquids. Optics Express, 26, 25460-25470(2018).
[65] Y J ZHOU, Q Y LI, H Z ZHAO et al. Gain‐assisted active spoof plasmonic fano resonance for high‐resolution sensing of glucose aqueous solutions. Advanced Materials Technologies, 5, 1900767(2019).
[66] Q Y LI, X ZHAO, H Z ZHAO et al. Selective amplification of spoof localized surface plasmons. Applied Optics, 58, 9797-9802(2019).
[67] H Z ZHAO, Y J ZHOU, J CAI et al. Ultra-high resolution sensing of glucose concentration based on amplified half-integer localized surface plasmons mode. Journal of Physics D-Applied Physics, 53, 095305(2020).
[68] H XU, W S ZHAO, W J WU et al. Miniaturized microwave microfluidic sensor based on quarter-mode 2.5-D spoof plasmons. Sensors and Actuators a-Physical, 342, 113621(2022).
[69] Y KIM, A SALIM, LIM S . Millimeter-wave-based spoof localized surface plasmonic resonator for sensing glucose concentration. Biosensors-Basel, 11, 358(2021).
[70] Q JIANG, Y R YU, Y F ZHAO et al. Ultra-compact effective localized surface plasmonic sensor for permittivity measurement of aqueous ethanol solution with high sensitivity. IEEE Transactions on Instrumentation and Measurement, 70, 1-9(2021).
[71] M GHOLAMIAN, J SHABANPOUR, A CHELDAVI. Highly sensitive quarter-mode spoof localized plasmonic resonator for dual-detection RF microfluidic chemical sensor. Journal of Physics D-Applied Physics, 53, 145401(2020).
[72] H YUE, Q ZHAO, S ZHU et al. A miniaturized active dual siw re-entrant resonators for high-resolution and ultra-low-limit-concentration detection to glucose solutions. IEEE Transactions on Microwave Theory and Techniques, 71, 1587-1599(2023).
[73] M ABDOLRAZZAGHI, N KATCHINSKIY, A Y ELEZZABI et al. Noninvasive glucose sensing in aqueous solutions using an active split-ring resonator. IEEE Sensors Journal, 21, 18742-18755(2021).
[74] N C G BLACK, I RUNGGER, B LI et al. Adsorption dynamics of CVD graphene investigated by a contactless microwave method. 2D Materials, 5, 035024(2018).
[75] M H ZARIFI, A GHOLIDOUST, M ABDOLRAZZAGHI et al. Sensitivity enhancement in planar microwave active-resonator using metal organic framework for CO2 detection. Sensors and Actuators B-Chemical, 255, 1561-1568(2018).
[76] H YU, C WANG, F Y MENG et al. Design and analysis of ultrafast and high-sensitivity microwave transduction humidity sensor based on belt-shaped MoO3 nanomaterial. Sensors and Actuators B-Chemical, 304, 127138(2020).
[77] H L KAO, L C CHANG, Y C TSAI et al. Microwave gas sensor based on carbon nanotubes loaded on open loop ring resonators. IEEE Electron Device Letters, 43, 1740-1743(2022).
[78] C S LEE, C Y WU, Y L KUO. Wearable bracelet belt resonators for noncontact wrist location and pulse detection. IEEE Transactions on Microwave Theory and Techniques, 65, 4475-4482(2017).
[79] C H TSENG, C Z WU. A novel microwave phased-and perturbation-injection-locked sensor with self-oscillating complementary split-ring resonator for finger and wrist pulse detection. IEEE Transactions on Microwave Theory and Techniques, 68, 1933-1942(2020).
[80] J W ZHU, X ZHANG, T J CUI. Ultra-sensitive and real-time sensing based on deep-subwavelength spoof localized surface plasmons(2021).
[81] S M NIU, N MATSUHISA, L BEKER et al. A wireless body area sensor network based on stretchable passive tags. Nature Electronics, 2, 361-368(2019).
[82] M DAUTTA, M ALSHETAIWI, A ESCOBAR et al. Multi-functional hydrogel-interlayer RF/NFC resonators as a versatile platform for passive and wireless biosensing. Advanced Electronic Materials, 6, 1901311(2020).
[83] C ZHU, Y TANG, J GUO et al. High-temperature and high-sensitivity pressure sensors based on microwave resonators. IEEE Sensors Journal, 21, 18781-18792(2021).
[84] W WANG, X ZHANG, L ZHANG et al. Impacts of liquid level on microwave resonance sensing with a flexible microfluidic channel. Advanced Sensor Research, 2, 2200040(2023).
[85] Z CHEN, J F LI, T Z LI et al. A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. National Science Review, 9, nwac104(2022).
[86] A UNIYAL, G SRIVASTAVA, PAL A et al. Recent advances in optical biosensors for sensing applications: a review. Plasmonics, 18, 735-750(2023).
[87] Y F ZHANG, Y XIA, H T LING et al. Label-free diagnosis of ovarian cancer using spoof surface plasmon polariton resonant biosensor. Sensors and Actuators B-Chemical, 352, 130996(2022).
[88] I PIEKARZ, J SOROCKI, S GORSKA et al. High sensitivity and selectivity microwave biosensor using biofunctionalized differential resonant array implemented in LTCC for Escherichia coli detection. Measurement, 208, 112473(2023).
[89] A K KLEIN, C BOJAHR, A STOHR et al. Spoof plasmon polariton-antenna transitions for terahertz on-chip applications(2021).
[91] V G M ANNAMDAS, C K SOH. Contactless load monitoring in near-field with surface localized spoof plasmons—a new breed of metamaterials for health of engineering structures. Sensors and Actuators A: Physical, 244, 156-165(2016).
[92] V G M ANNAMDAS, C K SOH. Application of metamaterial surface plasmon and waveguide for robotic-arm based structural health monitoring. Journal of Nondestructive Evaluation, 37, 34(2018).
[93] Z P XIE, G WANG, L G SUN et al. Localised spoof surface plasmon-based sensor for omni-directional cracks detection in metal surfaces. IET Microwaves Antannas & Propagation, 13, 2061-2066(2019).
[94] J WANG, X Q YANG, P Q SU et al. Thickness measurement of magnetic absorbing coating on metallic surface by localized spoof surface plasmon-based sensor. IEEE Sensors Journal, 21, 27433-27440(2021).
[95] X YANG, X TIAN, Q H ZENG et al. Localized surface plasmons on textiles for non-contact vital sign sensing. IEEE Transactions on Antennas and Propagation, 70, 8507-8517(2022).
[96] O ELHADIDY, S SHAKIB, K KRENEK et al. A wide-band fully-integrated CMOS ring-oscillator PLL-based complex dielectric spectroscopy system. IEEE Transactions on Circuits and Systems I-Regular Papers, 62, 1940-1949(2015).
[97] S GUHA, K SCHMALZ, C WENGER et al. Self-calibrating highly sensitive dynamic capacitance sensor: towards rapid sensing and counting of particles in laminar flow systems. Analyst, 140, 3262-3272(2015).
[98] M ABDOLRAZZAGHI, M DANESHMAND. Exploiting sensitivity enhancement in micro-wave planar sensors using intermodulation products with phase noise analysis. IEEE Transactions on Circuits and Systems I-Regular Papers, 67, 4382-4395(2020).
[101] R V POUND. Electric frequency stabilization of microwave oscillators. Review of Scientific Instruments, 17, 490-505(1946).
[102] R W P DREVER, J L HALL, F V KOWALSKI et al. Laser phase and frequency stabilization using an optical-resonator. Applied Physics B-Photophysics and Laser Chemistry, 31, 97-105(1983).
[103] E D BLACK. An introduction to Pound-Drever-Hall laser frequency stabilization. American Journal of Physics, 69, 79-87(2001).
[104] R W DREVER, J L HALL, F V KOWALSKI et al. Laser phase and frequency stabilization using an optical resonator. Applied Physics B, 31, 97-105(1983).
[105] E D BLACK. An introduction to Pound–Drever–Hall laser frequency stabilization. American Journal of Physics, 69, 79-87(2001).
Get Citation
Copy Citation Text
Tianshuo BAI, Wanzhu WANG, Longfei ZHANG, Xuanru ZHANG, Tiejun CUI. Progress in Highly Sensitive Sensing Based on Spoof Localized Surface Plasmons(Invited)[J]. Acta Photonica Sinica, 2023, 52(10): 1052401
Category:
Received: Jun. 30, 2023
Accepted: Aug. 22, 2023
Published Online: Dec. 5, 2023
The Author Email: ZHANG Xuanru (zhangxru@seu.edu.cn), CUI Tiejun (tjcui@seu.edu.cn)