Acta Photonica Sinica, Volume. 52, Issue 10, 1052401(2023)
Progress in Highly Sensitive Sensing Based on Spoof Localized Surface Plasmons(Invited)
[1] ZHANG X, CUI W Y, LEI Y et al. Spoof localized surface plasmons for sensing applications[J]. Advanced Materials Technologies, 6, 2000863(2021).
[2] PORS A, MORENO E, MARTIN-MORENO L et al. Localized spoof plasmons arise while texturing closed surfaces[J]. Physical Review Letters, 108, 223905(2012).
[3] HUIDOBRO P A, SHEN X, CUERDA J et al. Magnetic localized surface plasmons[J]. Physical Review X, 4, 021003(2014).
[4] SHEN X, CUI T J. Ultrathin plasmonic metamaterial for spoof localized surface plasmons[J]. Laser & Photonics Reviews, 8, 137-145(2014).
[5] ZHANG X R, BAO D, LIU J F et al. Wide-bandpass filtering due to multipole resonances of spoof localized surface plasmons[J]. Annalen Der Physik, 530, 1800207(2018).
[6] SHEN Y Z, CHEN N, DONG G Q et al. Manipulating multipole resonances in spoof localized surface plasmons for wideband filtering[J]. Optics Letters, 46, 1550-1553(2021).
[7] LIAO Z, LUO G Q, WU X Y et al. A horizontally polarized omnidirectional antenna based on spoof surface plasmons[J]. Frontiers in Physics, 8, 53(2020).
[8] CHEN Z Z, WANG M, GUAN D F et al. Wideband filtering antenna fed through hybrid substrate integrated waveguide and spoof localized surface plasmon structure[J]. IEEE Transactions on Antennas and Propagation, 70, 3812-3817(2022).
[9] GARCIA-VIDAL F J, FERNANDEZ-DOMINGUEZ A I, MARTIN-MORENO L et al. Spoof surface plasmon photonics[J]. Review of Modern Physics, 94, 025004(2022).
[10] SU J, GOLDBERG A F, STOLTZ B M. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators[J]. Light: Science & Applications, 5, e16001(2016).
[11] ARMANI A M, KULKARNI R P, FRASER S E et al. Label-free, single-molecule detection with optical microcavities[J]. Science, 317, 783-787(2007).
[12] ZHANG X R, CUI T J. Deep-subwavelength and high-Q trapped mode induced by symmetry-broken in toroidal plasmonic resonator[J]. IEEE Transactions on Antennas and Propagation, 69, 2122-2129(2021).
[13] ZHANG X, CUI T J. Contactless glucose sensing at sub‐micromole level using a deep‐subwavelength decimeter‐wave plasmonic resonator[J]. Laser & Photonics Reviews, 16, 2200221(2022).
[14] ZHOU Q J, FU Y Y, LIU J Q et al. Plasmonic bound states in the continuum in compact nanostructures[J]. Advanced Optical Materials, 10, 2201590(2022).
[15] LI S Q, DU C H, YIN L Z et al. Quasi-bound states in the continuum of localized spoof surface plasmons[J]. ACS Photonics, 9, 3333-3340(2022).
[16] DAVIS T J, JANOSCHKA D, DREHER P et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution[J]. Science, 368, eaba6415(2020).
[17] SHEN Y, MARTINEZ E C, ROSALES-GUZMAN C. Generation of optical skyrmions with tunable topological textures[J]. ACS Photonics, 9, 296-303(2022).
[18] DENG Z L, SHI T, KRASNOK A et al. Observation of localized magnetic plasmon skyrmions[J]. Nature Communications, 13, 8(2022).
[19] YANG J, ZHENG X Z, WANG J F et al. Symmetry-protected spoof localized surface plasmonic skyrmion[J]. Laser & Photonics Reviews, 16, 2200007(2022).
[20] YANG J, ZHENG X Z, WANG J F et al. Customizing the topological charges of vortex modes by exploiting symmetry principles[J]. Laser & Photonics Reviews, 16, 2100373(2022).
[21] ARMANI D K, KIPPENBERG T J, SPILLANE S M et al. Ultra-high-Q toroid microcavity on a chip[J]. Nature, 421, 925-928(2003).
[22] VAHALA K J. Optical microcavities[J]. Nature, 424, 839-846(2003).
[23] CHEN W J, OZDEMIR S K, ZHAO G M et al. Exceptional points enhance sensing in an optical microcavity[J]. Nature, 548, 192-196(2017).
[24] PENG B, OZDEMIR S K, LIERTZER M et al. Chiral modes and directional lasing at exceptional points[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 6845-6850(2016).
[25] JEONG H Y, LIM Y, HAN J et al. Electrical addressing of exceptional points in compact plasmonic structures[J]. Nanophotonics, 12, 2029-2039(2023).
[26] YANG Y M, XIE X R, LI Y Z et al. Radiative anti-parity-time plasmonics[J]. Nature Communications, 13, 7678(2022).
[27] COULLET P, GIL L, ROCCA F. Optical vortices[J]. Optics Communications, 73, 403-408(1989).
[28] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C et al. Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).
[29] SHEN Y J, WANG X J, XIE Z W et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light Science & Applications, 8, 90(2019).
[30] BERRY M V, LIU W. No general relation between phase vortices and orbital angular momentum[J]. Journal of Physics a-Mathematical and Theoretical, 55, 374001(2022).
[31] THIDE B, THEN H, SJOHOLM J et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 99, 087701(2007).
[32] TAMBURINI F, MARI E, SPONSELLI A et al. Encoding many channels on the same frequency through radio vorticity: first experimental test[J]. New Journal of Physics, 14, 033001(2012).
[33] TENNANT A, ALLEN B. Generation of OAM radio waves using circular time-switched array antenna[J]. Electronics Letters, 48, 1365-1366(2012).
[34] CHENG L, HONG W, HAO Z C. Generation of electromagnetic waves with arbitrary orbital angular momentum modes[J]. Scientific Reports, 4, 4814(2014).
[35] PFEIFFER C, GRBIC A. Controlling vector bessel beams with metasurfaces[J]. Physical Review Applied, 2, 044012(2014).
[36] ARIKAWA T, HIRAOKA T, MORIMOTO S et al. Transfer of orbital angular momentum of light to plasmonic excitations in metamaterials[J]. Science Advances, 6, eaay1977(2020).
[37] SU H, SHEN X, SU G et al. Efficient generation of microwave plasmonic vortices via a single deep-subwavelength meta-particle[J]. Laser & Photonics Reviews, 12, 1800010(2018).
[38] LIAO Z, ZHOU J N, LUO G Q et al. Microwave-vortex-beam generation based on spoof-plasmon ring resonators[J]. Physical Review Applied, 13, 054013(2020).
[39] LIAO Z, CHE Y, LIU L et al. Reconfigurable vector vortex beams using spoof surface plasmon ring resonators[J]. IEEE Transactions on Antennas and Propagation, 70, 6795-6803(2022).
[40] ZHANG X R, ZHAO X, CUI T J. Microwave vortex transceiver system with continuous tunability using identical plasmonic resonators[J]. Advanced Optical Materials, 10, 2201543(2022).
[41] LAVERY M P J, SPEIRITS F C, BARNETT S M et al. Detection of a spinning object using light's orbital angular momentum[J]. Science, 341, 537-540(2013).
[42] ZHOU Z L, CHENG Y Q, LIU K et al. Rotational Doppler resolution of spinning target detection based on OAM beams[J]. IEEE Sensors Letters, 3, 1-4(2019).
[43] CROMB M, GIBSON G M, TONINELLI E et al. Amplification of waves from a rotating body[J]. Nature Physics, 16, 1069-1073(2020).
[44] ZHANG X, CUI T J. Single-particle dichroism using orbital angular momentum in a microwave plasmonic resonator[J]. ACS Photonics, 7, 5291-5297(2020).
[45] GAO Z, GAO F, XU H Y et al. Localized spoof surface plasmons in textured open metal surfaces[J]. Optics Letters, 41, 2181-2184(2016).
[46] TAO J, TANG P, HE S et al. Experimental demonstration of low-energy first-order hybridized plasmon resonances in origami metashells[J]. Advanced Optical Materials, 2300841(2023).
[47] FU J H, WU W J, WANG D W et al. High-sensitivity microfluidic sensor based on quarter-mode interdigitated spoof plasmons[J]. IEEE Sensors Journal, 22, 23888-23895(2022).
[48] GAO X X, CHEN B J, SHUM K M et al. Multifunctional terahertz spoof plasmonic devices[J]. Advanced Materials Technologies, 8, 2202050(2023).
[49] KAMESHKOV O, GERASIMOV V, KUZNETSOV S. Sensing performance analysis of spiral metasurface utilizing phase spectra measurement technique[J]. Photonics, 10, 243(2023).
[50] LIAO Z, LIU S, MA H F et al. Electromagnetically induced transparency metamaterial based on spoof localized surface plasmons at terahertz frequencies[J]. Scientific Reports, 6, 27596(2016).
[51] CHEN L, XU N, SINGH L et al. Defect-induced fano resonances in corrugated plasmonic metamaterials[J]. Advanced Optical Materials, 5, 1600960(2017).
[52] ZHAO Z Y, DU M J, JIANG C P et al. Terahertz inner and outer edge modes in a tetramer of strongly coupled spoof localized surface plasmons[J]. Optics Letters, 48, 1343-1346(2023).
[53] DU M J, ZHAO Z Y, QIN H et al. Dual band symmetry-protected terahertz bound states in the continuum inside the spoof localized surface plasmon induced-transparency windows[J]. Journal of Physics D-Applied Physics, 56, 045104(2023).
[54] ZHOU J, CHEN L, SUN Q Y et al. Terahertz on-chip sensing by exciting higher radial order spoof localized surface plasmons[J]. Applied Physics Express, 13, 012014(2020).
[55] PANDIT N, JAISWAL R K, PATHAK N P. Towards development of a non-intrusive and label-free THz sensor for rapid detection of aqueous bio-samples using microfluidic approach[J]. IEEE Trans Biomed Circuits Syst, 15, 91-101(2021).
[56] GAO Z, GAO F, ZHANG Y et al. Forward/backward switching of plasmonic wave propagation using sign-reversal coupling[J]. Advanced Materials, 29, 1700018(2017).
[57] ZHANG J, LIAO Z, LUO Y et al. Spoof plasmon hybridization[J]. Laser & Photonics Reviews, 11, 1600191(2017).
[58] GAO F, GAO Z, LUO Y et al. Invisibility dips of near-field energy transport in a spoof plasmonic metadimer[J]. Advanced Functional Materials, 26, 8307-8312(2016).
[59] GAO Z, GAO F, ZHANG Y M et al. Deep-subwavelength magnetic-coupling-dominant interaction among magnetic localized surface plasmons[J]. Physical Review B, 93, 195410(2016).
[60] ZHANG X, YAN R T, CUI T J. High-FoM resonance in single hybrid plasmonic resonator via electromagnetic modal interference[J]. IEEE Transactions on Antennas and Propagation, 68, 6447-6451(2020).
[61] LIU S, XU Z, YIN X et al. High-Q-value classical electromagnetically induced transparency based on dipoles overlapping at spoof localized surface plasmons[J]. Journal of the Optical Society of America B-Optical Physics, 38, 1156-1162(2021).
[62] MOHAMMADI S, ADHIKARI K K, JAIN M C et al. High-resolution, sensitivity-enhanced active resonator sensor using substrate-embedded channel for characterizing low-concentration liquid mixtures[J]. IEEE Transactions on Microwave Theory and Techniques, 70, 576-586(2022).
[63] CUI Y, GE A J. A tunable high-Q microwave detector for on-column capillary liquid chromatography[J]. IEEE Transactions on Instrumentation and Measurement, 69, 5978-5980(2020).
[64] CAI J, ZHOU Y J, ZHANG Y et al. Gain-assisted ultra-high-Q spoof plasmonic resonator for the sensing of polar liquids[J]. Optics Express, 26, 25460-25470(2018).
[65] ZHOU Y J, LI Q Y, ZHAO H Z et al. Gain‐assisted active spoof plasmonic fano resonance for high‐resolution sensing of glucose aqueous solutions[J]. Advanced Materials Technologies, 5, 1900767(2019).
[66] LI Q Y, ZHAO X, ZHAO H Z et al. Selective amplification of spoof localized surface plasmons[J]. Applied Optics, 58, 9797-9802(2019).
[67] ZHAO H Z, ZHOU Y J, CAI J et al. Ultra-high resolution sensing of glucose concentration based on amplified half-integer localized surface plasmons mode[J]. Journal of Physics D-Applied Physics, 53, 095305(2020).
[68] XU H, ZHAO W S, WU W J et al. Miniaturized microwave microfluidic sensor based on quarter-mode 2.5-D spoof plasmons[J]. Sensors and Actuators a-Physical, 342, 113621(2022).
[69] KIM Y, SALIM A, LIM S. Millimeter-wave-based spoof localized surface plasmonic resonator for sensing glucose concentration[J]. Biosensors-Basel, 11, 358(2021).
[70] JIANG Q, YU Y R, ZHAO Y F et al. Ultra-compact effective localized surface plasmonic sensor for permittivity measurement of aqueous ethanol solution with high sensitivity[J]. IEEE Transactions on Instrumentation and Measurement, 70, 1-9(2021).
[71] GHOLAMIAN M, SHABANPOUR J, CHELDAVI A. Highly sensitive quarter-mode spoof localized plasmonic resonator for dual-detection RF microfluidic chemical sensor[J]. Journal of Physics D-Applied Physics, 53, 145401(2020).
[72] YUE H, ZHAO Q, ZHU S et al. A miniaturized active dual siw re-entrant resonators for high-resolution and ultra-low-limit-concentration detection to glucose solutions[J]. IEEE Transactions on Microwave Theory and Techniques, 71, 1587-1599(2023).
[73] ABDOLRAZZAGHI M, KATCHINSKIY N, ELEZZABI A Y et al. Noninvasive glucose sensing in aqueous solutions using an active split-ring resonator[J]. IEEE Sensors Journal, 21, 18742-18755(2021).
[74] BLACK N C G, RUNGGER I, LI B et al. Adsorption dynamics of CVD graphene investigated by a contactless microwave method[J]. 2D Materials, 5, 035024(2018).
[75] ZARIFI M H, GHOLIDOUST A, ABDOLRAZZAGHI M et al. Sensitivity enhancement in planar microwave active-resonator using metal organic framework for CO2 detection[J]. Sensors and Actuators B-Chemical, 255, 1561-1568(2018).
[76] YU H, WANG C, MENG F Y et al. Design and analysis of ultrafast and high-sensitivity microwave transduction humidity sensor based on belt-shaped MoO3 nanomaterial[J]. Sensors and Actuators B-Chemical, 304, 127138(2020).
[77] KAO H L, CHANG L C, TSAI Y C et al. Microwave gas sensor based on carbon nanotubes loaded on open loop ring resonators[J]. IEEE Electron Device Letters, 43, 1740-1743(2022).
[78] LEE C S, WU C Y, KUO Y L. Wearable bracelet belt resonators for noncontact wrist location and pulse detection[J]. IEEE Transactions on Microwave Theory and Techniques, 65, 4475-4482(2017).
[79] TSENG C H, WU C Z. A novel microwave phased-and perturbation-injection-locked sensor with self-oscillating complementary split-ring resonator for finger and wrist pulse detection[J]. IEEE Transactions on Microwave Theory and Techniques, 68, 1933-1942(2020).
[80] ZHU J W, ZHANG X, CUI T J. Ultra-sensitive and real-time sensing based on deep-subwavelength spoof localized surface plasmons[C](2021).
[81] NIU S M, MATSUHISA N, BEKER L et al. A wireless body area sensor network based on stretchable passive tags[J]. Nature Electronics, 2, 361-368(2019).
[82] DAUTTA M, ALSHETAIWI M, ESCOBAR A et al. Multi-functional hydrogel-interlayer RF/NFC resonators as a versatile platform for passive and wireless biosensing[J]. Advanced Electronic Materials, 6, 1901311(2020).
[83] ZHU C, TANG Y, GUO J et al. High-temperature and high-sensitivity pressure sensors based on microwave resonators[J]. IEEE Sensors Journal, 21, 18781-18792(2021).
[84] WANG W, ZHANG X, ZHANG L et al. Impacts of liquid level on microwave resonance sensing with a flexible microfluidic channel[J]. Advanced Sensor Research, 2, 2200040(2023).
[85] CHEN Z, LI J F, LI T Z et al. A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2[J]. National Science Review, 9, nwac104(2022).
[86] UNIYAL A, SRIVASTAVA G, PAL A et al. Recent advances in optical biosensors for sensing applications: a review[J]. Plasmonics, 18, 735-750(2023).
[87] ZHANG Y F, XIA Y, LING H T et al. Label-free diagnosis of ovarian cancer using spoof surface plasmon polariton resonant biosensor[J]. Sensors and Actuators B-Chemical, 352, 130996(2022).
[88] PIEKARZ I, SOROCKI J, GORSKA S et al. High sensitivity and selectivity microwave biosensor using biofunctionalized differential resonant array implemented in LTCC for Escherichia coli detection[J]. Measurement, 208, 112473(2023).
[89] KLEIN A K, BOJAHR C, STOHR A et al. Spoof plasmon polariton-antenna transitions for terahertz on-chip applications[C](2021).
[91] ANNAMDAS V G M, SOH C K. Contactless load monitoring in near-field with surface localized spoof plasmons—a new breed of metamaterials for health of engineering structures[J]. Sensors and Actuators A: Physical, 244, 156-165(2016).
[92] ANNAMDAS V G M, SOH C K. Application of metamaterial surface plasmon and waveguide for robotic-arm based structural health monitoring[J]. Journal of Nondestructive Evaluation, 37, 34(2018).
[93] XIE Z P, WANG G, SUN L G et al. Localised spoof surface plasmon-based sensor for omni-directional cracks detection in metal surfaces[J]. IET Microwaves Antannas & Propagation, 13, 2061-2066(2019).
[94] WANG J, YANG X Q, SU P Q et al. Thickness measurement of magnetic absorbing coating on metallic surface by localized spoof surface plasmon-based sensor[J]. IEEE Sensors Journal, 21, 27433-27440(2021).
[95] YANG X, TIAN X, ZENG Q H et al. Localized surface plasmons on textiles for non-contact vital sign sensing[J]. IEEE Transactions on Antennas and Propagation, 70, 8507-8517(2022).
[96] ELHADIDY O, SHAKIB S, KRENEK K et al. A wide-band fully-integrated CMOS ring-oscillator PLL-based complex dielectric spectroscopy system[J]. IEEE Transactions on Circuits and Systems I-Regular Papers, 62, 1940-1949(2015).
[97] GUHA S, SCHMALZ K, WENGER C et al. Self-calibrating highly sensitive dynamic capacitance sensor: towards rapid sensing and counting of particles in laminar flow systems[J]. Analyst, 140, 3262-3272(2015).
[98] ABDOLRAZZAGHI M, DANESHMAND M. Exploiting sensitivity enhancement in micro-wave planar sensors using intermodulation products with phase noise analysis[J]. IEEE Transactions on Circuits and Systems I-Regular Papers, 67, 4382-4395(2020).
[101] POUND R V. Electric frequency stabilization of microwave oscillators[J]. Review of Scientific Instruments, 17, 490-505(1946).
[102] DREVER R W P, HALL J L, KOWALSKI F V et al. Laser phase and frequency stabilization using an optical-resonator[J]. Applied Physics B-Photophysics and Laser Chemistry, 31, 97-105(1983).
[103] BLACK E D. An introduction to Pound-Drever-Hall laser frequency stabilization[J]. American Journal of Physics, 69, 79-87(2001).
[104] DREVER R W, HALL J L, KOWALSKI F V et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 31, 97-105(1983).
[105] BLACK E D. An introduction to Pound–Drever–Hall laser frequency stabilization[J]. American Journal of Physics, 69, 79-87(2001).
Get Citation
Copy Citation Text
Tianshuo BAI, Wanzhu WANG, Longfei ZHANG, Xuanru ZHANG, Tiejun CUI. Progress in Highly Sensitive Sensing Based on Spoof Localized Surface Plasmons(Invited)[J]. Acta Photonica Sinica, 2023, 52(10): 1052401
Category:
Received: Jun. 30, 2023
Accepted: Aug. 22, 2023
Published Online: Dec. 5, 2023
The Author Email: Xuanru ZHANG (zhangxru@seu.edu.cn), Tiejun CUI (tjcui@seu.edu.cn)