Laser & Optoelectronics Progress, Volume. 56, Issue 24, 240002(2019)

Imaging Principles and Applications of Super-Resolution Optical Microscopy

Yun Fu*, Tianle Wang, and Sen Zhao
Author Affiliations
  • School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • show less
    References(93)

    [1] Hell S W, Sahl S J, Bates M et al. The 2015 super-resolution microscopy roadmap[J]. Journal of Physics D: Applied Physics, 48, 443001(2015).

    [2] Chi K R. Super-resolution microscopy: breaking the limits[J]. Nature Methods, 6, 15-18(2009).

    [4] Qin P W, Parlak M, Kuscu C et al. Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9[J]. Nature Communications, 8, 14725(2017).

    [5] Samanta S, Gong W J, Li W et al. Organic fluorescent probes for stochastic optical reconstruction microscopy (STORM): recent highlights and future possibilities[J]. Coordination Chemistry Reviews, 380, 17-34(2019).

    [6] Almada P, Culley S, Henriques R. PALM and STORM: into large fields and high-throughput microscopy with sCMOS detectors[J]. Methods, 88, 109-121(2015).

    [7] Bernhem K, Blom H, Brismar H. Quantification of endogenous and exogenous protein expressions of Na, K-ATPase with super-resolution PALM/STORM imaging[J]. PLoS One, 13, e0195825(2018).

    [9] Betzig E, Patterson G H, Sougrat R et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 313, 1642-1645(2006).

    [13] Huang B, Bates M, Zhuang X W. Super-resolution fluorescence microscopy[J]. Annual Review of Biochemistry, 78, 993-1016(2009).

    [14] Sydor A M, Czymmek K J, Puchner E M et al. Super-resolution microscopy: from single molecules to supramolecular assemblies[J]. Trends in Cell Biology, 25, 730-748(2015).

    [15] Chéreau R, Tønnesen J, Nägerl U V. STED microscopy for nanoscale imaging in living brain slices[J]. Methods, 88, 57-66(2015).

    [16] Vicidomini G, Bianchini P, Diaspro A. STED super-resolved microscopy[J]. Nature Methods, 15, 173-182(2018).

    [17] Yu W T, Ji Z H, Dong D S et al. Super-resolution deep imaging with hollow Bessel beam STED microscopy[J]. Laser & Photonics Reviews, 10, 147-152(2016).

    [20] Curd A, Cleasby A, Makowska K et al. Construction of an instant structured illumination microscope[J]. Methods, 88, 37-47(2015).

    [21] Heintzmann R, Huser T. Super-resolution structured illumination microscopy[J]. Chemical Reviews, 117, 13890-13908(2017).

    [22] Saxena M, Eluru G, Gorthi S S. Structured illumination microscopy[J]. Advances in Optics and Photonics, 7, 241-275(2015).

    [24] Wei F F, Ponsetto J L, Liu Z W[M]. Plasmonic structured illumination microscopy, 127-163(2017).

    [25] Li D, Shao L, Chen B C, cytoskeletal dynamics[J]. Science et al. 349(6251): aab3500(2015).

    [26] Chmyrov A, Keller J, Grotjohann T et al. Nanoscopy with more than 100, 000 ‘doughnuts’[J]. Nature Methods, 10, 737-740(2013).

    [31] Shroff H, Galbraith C G, Galbraith J A et al. Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes[J]. Proceedings of the National Academy of Sciences, 104, 20308-20313(2007).

    [33] Bintu B, Mateo L J, Su J H et al. 362(6413): eaau1783[J]. cooperative interactions in single cells. Science(2018).

    [34] Xu J Q, Tehrani K F, Kner P. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy[J]. ACS Nano, 9, 2917-2925(2015).

    [35] Göttfert F, Pleiner T, Heine J et al. Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent[J]. Proceedings of the National Academy of Sciences, 114, 2125-2130(2017).

    [38] Legant W R, Shao L, Grimm J B et al. High-density three-dimensional localization microscopy across large volumes[J]. Nature Methods, 13, 359-365(2016).

    [39] Wang Y L, Kanchanawong P[J]. Three-dimensional super resolution microscopy of F-actin filaments by interferometric photoactivated localization microscopy (iPALM) Journal of Visualized Experiments, 2016, e54774.

    [40] Buss J, Coltharp C, Shtengel G et al. A multi-layered protein network stabilizes the Escherichia coli FtsZ-ring and modulates constriction dynamics[J]. PLoS Genetics, 11, e1005128(2015).

    [41] Kraus F, Miron E, Demmerle J et al. Quantitative 3D structured illumination microscopy of nuclear structures[J]. Nature Protocols, 12, 1011-1028(2017).

    [42] Hell S. Stelzer E H K. Properties of a 4Pi confocal fluorescence microscope[J]. Journal of the Optical Society of America A, 9, 2159-2166(1992).

    [43] Huang F, Sirinakis G, Allgeyer E S et al. Ultra-high resolution 3D imaging of whole cells[J]. Cell, 166, 1028-1040(2016).

    [44] von Diezmann A, Shechtman Y, Moerner W E. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking[J]. Chemical Reviews, 117, 7244-7275(2017).

    [47] Xu J Q, Ma H Q. 81(1): 12. 46.1-12., 46, 27(2017).

    [48] Pavani S R P, Thompson M A, Biteen J S et al. . Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function[J]. Proceedings of the National Academy of Sciences, 106, 2995-2999(2009).

    [54] Vangindertael J, Beets I, Rocha S et al. Super-resolution mapping of glutamate receptors in C. elegans by confocal correlated PALM[J]. Scientific Reports, 5, 13532(2015).

    [56] Patton B R, Burke D, Owald D et al. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics[J]. Optics Express, 24, 8862-8876(2016).

    [57] Gustavsson A K, Petrov P N, Lee M Y et al. 3D single-molecule super-resolution microscopy with a tilted light sheet[J]. Nature Communications, 9, 123(2018).

    [58] Sigal Y M, Zhou R B, Zhuang X W. Visualizing and discovering cellular structures with super-resolution microscopy[J]. Science, 361, 880-887(2018).

    [60] Wegner W, Ilgen P, Gregor C et al. In vivo mouse and live cell STED microscopy of neuronal actin plasticity using far-red emitting fluorescent proteins[J]. Scientific Reports, 7, 11781(2017).

    [61] D'Este E. Kamin D, Balzarotti F, et al. Ultrastructural anatomy of nodes of Ranvier in the peripheral nervous system as revealed by STED microscopy[J]. Proceedings of the National Academy of Sciences, 114, E191-E199(2017).

    [62] Boettiger A N, Bintu B, Moffitt J R et al. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states[J]. Nature, 529, 418-422(2016).

    [66] Plass T, Schraidt O et al. . Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy[J]. Angewandte Chemie International Edition, 53, 2245-2249(2014).

    [68] Jans D C, Wurm C A, Riedel D et al. STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria[J]. Proceedings of the National Academy of Sciences, 110, 8936-8941(2013).

    [69] Westphal V. Lauterbach A,di Nicola A, et al. Dynamic far-field fluorescence nanoscopy[J]. New Journal of Physics, 9, 435(2007).

    [70] Bowler M, Kong D, Sun S F et al. High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy[J]. Nature Communications, 10, 993(2019).

    [71] Deng Y Y. Fluorescence super resolution microscopic imaging for the study of oocyte meiosis[D]. Shenzhen: Shenzhen University(2017).

    [72] Hanne J, Falk H J, Görlitz F et al. STED nanoscopy with fluorescent quantum dots[J]. Nature Communications, 6, 7127(2015).

    [74] Dudok B, Barna L, Ledri M et al. Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling[J]. Nature Neuroscience, 18, 75-86(2015).

    [76] Laplante C, Huang F, Tebbs I R et al. Molecular organization of cytokinesis nodes and contractile rings by super-resolution fluorescence microscopy of live fission yeast[J]. Proceedings of the National Academy of Sciences, 113, E5876-E5885(2016).

    [78] Holden S J, Pengo T, Meibom K L et al. High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization[J]. Proceedings of the National Academy of Sciences, 111, 4566-4571(2014).

    [79] Strauss M P. Liew A T F, Turnbull L, et al. 3D-SIM super resolution microscopy reveals a bead-like arrangement for FtsZ and the division machinery: implications for triggering cytokinesis[J]. PLoS Biology, 10, e1001389(2012).

    [80] Chen M H, Liu S Y, Li W et al. Three-fragment fluorescence complementation coupled with photoactivated localization microscopy for nanoscale imaging of ternary complexes[J]. ACS Nano, 10, 8482-8490(2016).

    [82] Xia Y, Fu B M. Investigation of endothelial surface glycocalyx components and ultrastructure by single molecule localization microscopy: stochastic optical reconstruction microscopy (STORM)[J]. The Yale Journal of Biology and Medicine, 91, 257-266(2018).

    [83] Wegel E, Göhler A, Lagerholm B C et al. Imaging cellular structures in super-resolution with SIM, STED and Localisation Microscopy: a practical comparison[J]. Scientific Reports, 6, 27290(2016).

    [84] Butkevich A N, Mitronova G Y, Sidenstein S C et al. Fluorescent rhodamines and fluorogenic carbopyronines for super-resolution STED microscopy in living cells[J]. Angewandte Chemie International Edition, 55, 3290-3294(2016).

    [87] Unsain N, Bordenave M D, Martinez G F et al. Author correction: remodeling of the actin/spectrin membrane-associated periodic skeleton, growth cone collapse and F-actin decrease during axonal degeneration[J]. Scientific Reports, 8, 3007(2018).

    [89] Pan L T, Yan R, Li W et al. Super-resolution microscopy reveals the native ultrastructure of the erythrocyte cytoskeleton[J]. Cell Reports, 22, 1151-1158(2018).

    [90] Unsain N, Stefani F D, Cáceres A. The actin/spectrin membrane-associated periodic skeleton in neurons[J]. Frontiers in Synaptic Neuroscience, 10, 10(2018).

    [92] Yuan S Y. STORM super resolution imaging of cytoskeleton[D]. Shenzhen: Shenzhen University(2017).

    [93] D'Este E. Kamin D, Göttfert F, et al. STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons[J]. Cell Reports, 10, 1246-1251(2015).

    Tools

    Get Citation

    Copy Citation Text

    Yun Fu, Tianle Wang, Sen Zhao. Imaging Principles and Applications of Super-Resolution Optical Microscopy[J]. Laser & Optoelectronics Progress, 2019, 56(24): 240002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Apr. 15, 2019

    Accepted: Jun. 5, 2019

    Published Online: Nov. 26, 2019

    The Author Email: Fu Yun (linda_fy@cust.edu.cn)

    DOI:10.3788/LOP56.240002

    Topics