Acta Optica Sinica, Volume. 43, Issue 9, 0931001(2023)

Design and Fabrication of New Curtain-Like WO3-Based Electrochromic Color-Changing Devices

Guoxin Chen1, Haoyuan Chen1, Zhiyong Zhang1, Chenchen Zhang1, Xiufeng Tang1,2、*, Yunfeng Zhan1,2、**, and Jianyi Luo1,2、***
Author Affiliations
  • 1School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong, China
  • 2Research Center of Flexible Sensing Materials and Devices, Wuyi University, Jiangmen 529020, Guangdong, China
  • show less
    References(35)

    [1] Granqvist C G. Out of a niche[J]. Nature Materials, 5, 89-90(2006).

    [2] Jin Y, Zhou L, Liang J et al. Electrochemically driven dynamic plasmonics[J]. Advanced Photonics, 3, 044002(2021).

    [3] Bange K, Gambke T. Electrochromic materials for optical switching devices[J]. Advanced Materials, 2, 10-16(1990).

    [4] Bach U, Corr D, Lupo D et al. Nanomaterials-based electrochromics for paper-quality displays[J]. Advanced Materials, 14, 845-848(2002).

    [5] Zhang W R, Wang X J, Wang Y Y et al. Bio-inspired ultra-high energy efficiency bistable electronic billboard and reader[J]. Nature Communications, 10, 1559(2019).

    [6] Yang C S, Shang D S, Liu N et al. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing[J]. Advanced Functional Materials, 28, 1804170(2018).

    [7] Xiao L L, Lü Y, Lin J et al. WO3-based electrochromic distributed Bragg reflector: toward electrically tunable microcavity luminescent device[J]. Advanced Optical Materials, 6, 1700791(2018).

    [8] Qi C J, Chen G X, Huang T C et al. Greatly simplified all-solid-state camera shielding device of mobile phone based on the shoulder-by-shoulder electrochromic technology[J]. ACS Applied Electronic Materials, 3, 2631-2637(2021).

    [9] Fan H W, Li K R, Hou C Y et al. Multi-functional electrochromic devices: integration strategies based on multiple and single devices[J]. Journal of Inorganic Materials, 36, 115-127(2021).

    [10] Ling H, Wu J C, Su F Y et al. Automatic light-adjusting electrochromic device powered by perovskite solar cell[J]. Nature Communications, 12, 1010(2021).

    [11] Zhong X L, Liu X Q, Diao X G. Electrochromic devices based on tungsten oxide and nickel oxide: a review[J]. Journal of Inorganic Materials, 36, 128-139(2021).

    [12] Xu T, Walter E C, Agrawal A et al. High-contrast and fast electrochromic switching enabled by plasmonics[J]. Nature Communications, 7, 10479(2016).

    [13] Zhang Q, Tsai C Y, Li L J et al. Colorless-to-colorful switching electrochromic polyimides with very high contrast ratio[J]. Nature Communications, 10, 1239(2019).

    [14] Weng W, Higuchi T, Suzuki M et al. A high-speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity[J]. Angewandte Chemie International Edition, 49, 3956-3959(2010).

    [15] Tian Y Y, Zhang W K, Cong S et al. Unconventional aluminum ion intercalation/deintercalation for fast switching and highly stable electrochromism[J]. Advanced Functional Materials, 25, 5833-5839(2015).

    [16] Wang X Q, Bian Z L. Preparation of Pt-WO3 nano-hydrogen sensitive film and research on its sensing properties[J]. Laser & Optoelectronics Progress, 60, 0731001(2023).

    [17] Li J L, Hong W L, Zhao C L et al. Multi-point optical fiber hydrogen sensor with Fabry-Perot interferometers using arrayed waveguide grating[J]. Acta Optica Sinica, 41, 1306013(2021).

    [18] Granqvist C G. Electrochromics for smart windows: oxide-based thin films and devices[J]. Thin Solid Films, 564, 1-38(2014).

    [19] Zhao Q, Fang Y S, Qiao K et al. Printing of WO3/ITO nanocomposite electrochromic smart windows[J]. Solar Energy Materials and Solar Cells, 194, 95-102(2019).

    [20] Granqvist C G, Azens A, Heszler P et al. Nanomaterials for benign indoor environments: electrochromics for “smart windows”, sensors for air quality, and photo-catalysts for air cleaning[J]. Solar Energy Materials and Solar Cells, 91, 355-365(2007).

    [21] Dong D M, Wang W W, Rougier A et al. Life-cycling and uncovering cation-trapping evidence of a monolithic inorganic electrochromic device: glass/ITO/WO3/LiTaO3/NiO/ITO[J]. Nanoscale, 10, 16521-16530(2018).

    [22] Khalifa Z S. Electronic structure changes of TiO2 thin films due to electrochromism[J]. Solar Energy Materials and Solar Cells, 124, 186-191(2014).

    [23] Yao Y J, Zhao Q, Wei W et al. WO3 quantum-dots electrochromism[J]. Nano Energy, 68, 104350(2020).

    [24] Wang W Q, Wang X L, Xia X H et al. Enhanced electrochromic and energy storage performance in mesoporous WO3 film and its application in a bi-functional smart window[J]. Nanoscale, 10, 8162-8169(2018).

    [25] Arvizu M A, Qu H Y, Cindemir U et al. Electrochromic WO3 thin films attain unprecedented durability by potentiostatic pretreatment[J]. Journal of Materials Chemistry A, 7, 2908-2918(2019).

    [26] Fang H J, Zheng P Y, Ma R et al. Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards[J]. Materials Horizons, 5, 1000-1007(2018).

    [27] Pan M J, Zhao S, Ma L et al. All-in-one electrochromic devices with biological tissues used as electronic components[J]. Solar Energy Materials and Solar Cells, 189, 27-32(2019).

    [28] Howard E L, Österholm A M, Shen D E et al. Cost-effective, flexible, and colorful dynamic displays: removing underlying conducting layers from polymer-based electrochromic devices[J]. ACS Applied Materials & Interfaces, 13, 16732-16743(2021).

    [29] Tang X F, Chen G X, Mo Z P et al. Controllable two-dimensional movement and redistribution of lithium ions in metal oxides[J]. Nature Communications, 10, 2888(2019).

    [30] Washizu E, Yamamoto A, Abe Y et al. Optical and electrochromic properties of RF reactively sputtered WO3 films[J]. Solid State Ionics, 165, 175-180(2003).

    [31] Wen R T, Granqvist C G, Niklasson G A. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films[J]. Nature Materials, 14, 996-1001(2015).

    [32] Chang C M, Chiang Y C, Cheng M H et al. Fabrication of WO3 electrochromic devices using electro-exploding wire techniques and spray coating[J]. Solar Energy Materials and Solar Cells, 223, 110960(2021).

    [33] Chu W J, Lin J L, Zheng Y W et al. Electrochromic performance of WO3 films prepared by polymeric precursor method[J]. Acta Optica Sinica, 38, 0216002(2018).

    [34] Li X N, Li Z J, He W T et al. Enhanced electrochromic properties of nanostructured WO3 film by combination of chemical and physical methods[J]. Coatings, 11, 959(2021).

    [35] Bhattacharjee S, Sen S, Samanta S et al. Study on the role of rGO in enhancing the electrochromic performance of WO3 film[J]. Electrochimica Acta, 427, 140820(2022).

    Tools

    Get Citation

    Copy Citation Text

    Guoxin Chen, Haoyuan Chen, Zhiyong Zhang, Chenchen Zhang, Xiufeng Tang, Yunfeng Zhan, Jianyi Luo. Design and Fabrication of New Curtain-Like WO3-Based Electrochromic Color-Changing Devices[J]. Acta Optica Sinica, 2023, 43(9): 0931001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Thin Films

    Received: Oct. 11, 2022

    Accepted: Nov. 25, 2022

    Published Online: May. 9, 2023

    The Author Email: Tang Xiufeng (tbrenda@sina.com), Zhan Yunfeng (zhanyf6@163.com), Luo Jianyi (luojiany@mail3.sysu.edu.cn)

    DOI:10.3788/AOS221809

    Topics