Acta Photonica Sinica, Volume. 52, Issue 5, 0552204(2023)

Technique and Astronomical Applications of Photonic Lanterns(Invited)

Zijian HAN1,2、* and Xiangyan YUAN1,2
Author Affiliations
  • 1National Astronomical Observatories/Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences, Nanjing 210042, China
  • 2CAS Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology, Nanjing 210042, China
  • show less
    References(100)

    [1] X CUI, Y ZHAO, Y CHU et al. The large sky area multi-object fiber spectroscopic telescope (LAMOST). Research in Astronomy and Astrophysics, 12, 1197-1242(2012).

    [2] L SIMARD. The Thirty-Meter Telescope: science and instrumentation for a next-generation observatory. Journal of Astrophysics and Astronomy, 34, 97-120(2013).

    [3] J P GARDNER, J C MATHER, M CLAMPIN et al. The james webb space telescope. Space Science Reviews, 123, 485-606(2006).

    [4] Xue TONG, Dong LIN, Jinping HE. Research status and application prospects of astrophotonics. Acta Astronomica Sinica, 63, 51(2022).

    [5] P GATKINE, S VEILLEUX, J MATHER et al. State of the profession: astrophotonics. Bulletin of the American Astronomical Society, 51, 285(2019).

    [6] W SUN, Q YAN, Y BI et al. Photonic lantern with cladding-removable fibers, 9151, 9151C(2014).

    [7] H YU, Q YAN, Z HUANG et al. Photonic lantern with multimode fibers embedded. Research in Astronomy and Astrophysics, 14, 1046(2014).

    [8] T A BIRKS, I GRIS-SANCHEZ, S YEROLATSITIS et al. The photonic lantern. Advances in Optics and Photonics, 7, 107-167(2015).

    [9] S G LEON-SAVAL, T BIRKS, J BLAND-HAWTHORN et al. Multimode fiber devices with single-mode performance. Optics Letters, 30, 2545-2547(2005).

    [10] J LIN, M P FITZGERALD, Y XIN et al. Focal-plane wavefront sensing with photonic lanterns: theoretical framework. Journal of the Optical Society of America B, 39, 2643-2656(2022).

    [11] S G LEON-SAVAL, N K FONTAINE, J R SALAZAR-GIL et al. Mode-selective photonic lanterns for spacedivision multiplexing. Optics Express, 22, 1036-1044(2014).

    [12] A M VELAZQUEZ-BENITEZ, J E ANTONIO-LOPEZ, J C ALVARADO-ZACARIAS et al. Scaling photonic lanterns for space-division multiplexing. Scientific Reports, 8, 8897(2018).

    [13] S G LEON-SAVAL, A ARGYROS, J BLAND-HAWTHORN. Photonic lanterns. Nanophotonics, 2, 429-440(2013).

    [14] S G LEON-SAVAL, A ARGYROS, J BLAND-HAWTHORN. Photonic lanterns: a study of light propagation in multimode to single-mode converters. Optics Express, 18, 8430-8439(2010).

    [15] C KITTEL, P MCEUEN. Introduction to solid state physics(2018).

    [16] B T KUHLMEY, T P WHITE, G RENVERSEZ et al. Multipole method for microstructured optical fibers. Ⅱ. Implementation and results. Journal of the Optical Society of America B, 19, 2331-2340(2002).

    [17] N K FONTAINE, R RYF, J BLAND-HAWTHORN et al. Geometric requirements for photonic lanterns in space division multiplexing. Optics Express, 20, 27123-27132(2012).

    [18] T A BIRKS, B J MANGAN, A DIEZ et al. Photonic lantern” spectral filters in multi-core Fiber. Optics Express, 20, 13996-14008(2012).

    [19] A W SNYDER, J D LOVE. Optical waveguide theory(1983).

    [20] J LOVE, W HENRY, W STEWART et al. Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria. IEE Proceedings J: Optoelectronics, 138, 343-354(1991).

    [21] R RYF, N K FONTAINE, R J ESSIAMBRE. Spot-based mode couplers for mode-multiplexed transmission in few-mode fiber. IEEE Photonics Technology Letters, 24, 1973-1976(2012).

    [22] H BULOW. Optical-mode demultiplexing by optical MIMO filtering of spatial samples. IEEE Photonics Technology Letters, 24, 1045-1047(2012).

    [23] D NOORDEGRAAF, P M W SKOVGAARD, M D NIELSEN et al. Efficient multi-mode to single-mode coupling in a photonic lantern. Optics Express, 17, 1988-1994(2009).

    [24] R R THOMSON, T A BIRKS, S G LEON-SAVAL et al. Ultrafast laser inscription of an integrated photonic lantern. Optics Express, 19, 5698-5705(2011).

    [25] I SPALENIAK, S GROSS, N JOVANOVIC et al. Multiband processing of multimode light: combining 3D photonic lanterns with waveguide Bragg gratings. Laser & Photonics Reviews, 8, L1-L5(2014).

    [26] N K FONTAINE, S G LEON-SAVAL, R RYF et al. Mode-selective dissimilar fiber photonic-lantern spatial multiplexers for few-mode fiber, 1-3(2013).

    [27] F LUAN, A K GEORGE, T HEDLEY et al. All-solid photonic bandgap fiber. Optics Letters, 29, 2369-2371(2004).

    [28] J BLAND-HAWTHORN, S C ELLIS, S G LEON-SAVAL et al. A complex multi-notch astronomical filter to suppress the bright infrared sky. Nature Communications, 2, 581(2011).

    [29] D NOORDEGRAAF, P M W SKOVGAARD, M D MAACK et al. Multi-mode to single-mode conversion in a 61 port Photonic Lantern. Optics Express, 18, 4673-4678(2010).

    [30] K M DAVIS, K MIURA, N SUGIMOTO et al. Writing waveguides in glass with a femtosecond laser. Optics Letters, 21, 1729-1731(1996).

    [31] A SALIMINIA, N NGUYEN, M C NADEAU et al. Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses. Journal of Applied Physics, 93, 3724-3728(2003).

    [32] N JOVANOVIC, I SPALENIAK, S GROSS et al. Integrated photonic building blocks for next-generation astronomical instrumentation I: the multimode waveguide. Optics Express, 20, 17029-17043(2012).

    [33] S LEON-SAVAL, T BIRKS, J BLAND-HAWTHORN et al. Single-mode performance in multimode fibre devices, PDP25(2005).

    [34] J BLAND-HAWTHORN, M ENGLUND, G EDVELL. New approach to atmospheric OH suppression using an aperiodic fibre Bragg grating. Optics Express, 12, 5902-5909(2004).

    [35] T MIZUNAMI, T V DJAMBOVA, T NIIHO et al. Bragg gratings in multimode and few-mode optical fibers. Journal of Lightwave Technology, 18, 230-235(2000).

    [36] S G LEON-SAVAL, T BIRKS, N JOLY et al. Splice-free interfacing of photonic crystal fibers. Optics Letters, 30, 1629-1631(2005).

    [37] P RUSSELL. Photonic crystal fibers. Science, 299, 358-362(2003).

    [38] D B MORTIMORE, J W ARKWRIGHT. Monolithic wavelength-flattened 1×7 single-mode fused fiber couplers: theory, fabrication, and analysis. Applied Optics, 30, 650-659(1991).

    [39] D MORTIMORE, J ARKWRIGHT. Monolithic wavelength-flattened 1×7 single-mode fused coupler. Electronics Letters, 9, 606-607(1989).

    [40] D NOORDEGRAAF, P M W SKOVGAARD, R H SANDBERG et al. Nineteen-port photonic lantern with multimode delivery fiber. Optics Letters, 37, 452-454(2012).

    [41] R CONTENT, J BLAND-HAWTHORN, S ELLIS et al. PRAXIS: low thermal emission high efficiency OH suppressed fibre spectrograph, 9151, 91514W(2014).

    [42] A WOLF, A DOSTOVALOV, K BRONNIKOV et al. Advances in femtosecond laser direct writing of fiber Bragg gratings in multicore fibers: technology, sensor and laser applications. Opto-Electronic Advances, 5, 210055(2022).

    [43] T A BIRKS, A DIEZ, J L CRUZ et al. Fibres are looking up: optical fibre transition structures in astrophotonics, FTuU1(2010).

    [44] T A BIRKS, B J MANGAN, A DIEZ et al. Multicore optical fibres for astrophotonics, JSIII2_1(2011).

    [45] J BLAND-HAWTHORN, J LAWRENCE, G ROBERTSON et al. PIMMS: photonic integrated multimode microspectrograph, 7735, 317-325(2010).

    [46] J BLAND-HAWTHORN, P KERN. Molding the flow of light: photonics in astronomy. Physics Today, 65, 31-37(2012).

    [47] D M HAYNES, I GRIS-SANCHEZ, K EHRLICH et al. New multicore low mode noise scrambling fiber for applications in high-resolution spectroscopy, 9151, 915155(2014).

    [48] R R THOMSON, G BROWN, A K KAR et al. An integrated fan-out device for astrophotonics, PDPA3(2010).

    [49] R R THOMSON, R J HARRIS, T A BIRKS et al. Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics. Optics Letters, 37, 2331-2333(2012).

    [50] S YEROLATSITIS, I GRIS-SÁNCHEZ, T BIRKS. Adiabatically-tapered fiber mode multiplexers. Optics Express, 22, 608-617(2014).

    [51] A WITKOWSKA, K LAI, S LEON-SAVAL et al. All-fiber anamorphic core-shape transitions. Optics Letters, 31, 2672-2674(2006).

    [52] Xiaoming XI, Guilin SUN, Zilun CHEN et al. Photonic crystal fibers tapering based on the conventional taper rig. Infrared and Laser Engineering, 41, 1481-1484(2012).

    [53] Chengdong ZHANG, Xuanfeng ZHOU, Zilun CHEN et al. Low loss fusion splicing for seven-core photonic crystal fiber by selected air hole collapse technique. Chinese Journal of Lasers, 41, 154-158(2014).

    [54] S NOLTE, M WILL, J BURGHOFF et al. Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics. Applied Physics A, 77, 109-111(2003).

    [55] R R THOMSON, A K KAR, J ALLINGTON-SMITH. Ultrafast laser inscription: an enabling technology for astrophotonics. Optics Express, 17, 1963-1969(2009).

    [56] R R THOMSON, T A BIRKS, S G LEON-SAVAL et al. Ultrafast laser inscription of an integrated multimode-to-single-modes waveguide transition for astrophotonics(2011).

    [57] A A SAID, M DUGAN, P BADO et al. Manufacturing by laser direct-write of three-dimensional devices containing optical and microfluidic networks, 5339, 194-204(2004).

    [58] Y NASU, M KOHTOKU, Y HIBINO. Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit. Optics Letters, 30, 723-725(2005).

    [59] I SPALENIAK, N JOVANOVIC, S GROSS et al. Enabling photonic technologies for seeing-limited telescopes: fabrication of integrated photonic lanterns on a chip, 8450, 845015(2012).

    [60] I SPALENIAK, N JOVANOVIC, S GROSS et al. Integrated photonic building blocks for next-generation astronomical instrumentation II: the multimode to single mode transition. Optics Express, 21, 27197-27208(2013).

    [61] R J HARRIS, D G MACLACHLAN, D CHOUDHURY et al. Photonic spatial reformatting of stellar light for diffraction-limited spectroscopy. Monthly Notices of the Royal Astronomical Society, 450, 428-434(2015).

    [62] D G MACLACHLAN, R HARRIS, D CHOUDHURY et al. Development of integrated “photonic-dicers” for reformatting the point-spread-function of a telescope, 9151, 91511W(2014).

    [63] A ARRIOLA, D CHOUDHURY, R R THOMSON. New generation of photonic lanterns for mid-IR astronomy, 9151, 402-408(2014).

    [64] A ARRIOLA, S GROSS, N JOVANOVIC et al. Low bend loss waveguides enable compact, efficient 3D photonic chips. Optics Express, 21, 2978-2986(2013).

    [65] T MEANY, S GROSS, N JOVANOVIC et al. Towards low-loss lightwave circuits for non-classical optics at 800 and 1,550 nm. Applied Physics A, 114, 113-118(2014).

    [66] N JOVANOVIC, C SCHWAB, N CVETOJEVIC et al. Enhancing stellar spectroscopy with extreme adaptive optics and photonics. Publications of the Astronomical Society of the Pacific, 128, 121001(2016).

    [67] N JOVANOVIC, C BEICHMAN, C BLAKE et al. Enabling the next generation of scientific discoveries by embracing photonic technologies(2019).

    [68] C Q TRINH, S C ELLIS, J BLAND-HAWTHORN et al. GNOSIS: the first instrument to use fiber bragg gratings for oh suppression. Astronomical Journal, 145, 51(2013).

    [69] P J MOSLEY, I GRIS-SÁNCHEZ, J M STONE et al. Characterizing the variation of propagation constants in multicore fiber. Optics Express, 22, 25689-25699(2014).

    [70] S C ELLIS, S S MIN, S G LEON-SAVAL et al. On the origin of core-to-core variations in multi-core fibre Bragg gratings, 10706, 1377-1388(2018).

    [71] E LINDLEY, S S MIN, S LEON-SAVAL et al. Demonstration of uniform multicore fiber Bragg gratings. Optics Express, 22, 31575-31581(2014).

    [72] J BLAND-HAWTHORN, S S MIN, E LINDLEY et al. Multicore fibre technology: the road to multimode photonics, 9912, 576-589(2016).

    [73] B CHAZELAS, F PEPE, F WILDI et al. New scramblers for precision radial velocity: square and octagonal fibers, 7739, 1458-1466(2010).

    [74] A ROY, S HALVERSON, S MAHADEVAN et al. Scrambling and modal noise mitigation in the Habitable Zone Planet Finder fiber feed, 9147, 1994-2000(2014).

    [75] S C ELLIS, J BLAND-HAWTHORN, J S LAWRENCE et al. First demonstration of OH suppression in a high-efficiency near-infrared spectrograph. Monthly Notices of the Royal Astronomical Society, 492, 2796-2806(2020).

    [76] T R HUNTER, L W RAMSEY. Scrambling properties of optical fibers and the performance of a double scrambler. Publications of the Astronomical Society of the Pacific, 104, 1244-1251(1992).

    [77] P P PLAVCHAN, M BOTTOM, P GAO et al. Precision near-infrared radial velocity instrumentation Ⅱ: noncircular core fiber scrambler, 8864, 165-182(2013).

    [78] R J HARRIS, L LABADIE, U LEMKE et al. Performance estimates for spectrographs using photonic reformatters, 9912, 1722-1729(2016).

    [79] I GRIS-SANCHEZ, D M HAYNES, K EHRLICH et al. Multicore fibre photonic lanterns for precision radial velocity Science. Monthly Notices of the Royal Astronomical Society, 475, 3065-3075(2018).

    [80] D M HAYNES, I GRIS-SANCHEZ, T A BIRKS et al. Optical fiber modal noise suppression in the NIR region using Multicore Fiber and Photonic Lanterns, 10706, 1750-1759(2018).

    [81] B C PLATT, R SHACK. History and principles of Shack-Hartmann wavefront sensing. Journal of Refractive Surgery, 17, S573-S577(2001).

    [82] R RAGAZZONI. Pupil plane wavefront sensing with an oscillating prism. Journal of Modern Optics, 43, 289-293(1996).

    [83] F RODDIER. Curvature sensing and compensation: a new concept in adaptive optics. Applied optics, 27, 1223-1225(1988).

    [84] C KULCSAR, G SIVO, H-FRAYNAUD et al. Vibrations in AO control: a short analysis of on-sky data around the world, 8447, 529-542(2012).

    [85] J F SAUVAGE, T FUSCO, M LAMB et al. Tackling down the low wind effect on SPHERE instrument, 9909, 408-416(2016).

    [86] J MILLI, M KASPER, P BOURGET et al. Low wind effect on VLT/SPHERE: impact, mitigation strategy, and results, 10703, 752-771(2018).

    [87] J F SAUVAGE, T FUSCO, G ROUSSET et al. Calibration and precompensation of noncommon path aberrations for extreme adaptive optics. Journal of the Optical Society of America A, 24, 2334-2346(2007).

    [88] M CORRIGAN, R J HARRIS, R R THOMSON et al. Wavefront sensing using a photonic lantern, 9909, 1848-1855(2016).

    [89] M K CORRIGAN, T J MORRIS, R J HARRIS et al. Demonstration of a photonic lantern low order wavefront sensor using an adaptive optics testbed, 10703, 1313-1320(2018).

    [90] B R M NORRIS, J WEI, C H BETTERS et al. An all-photonic focal-plane wavefront sensor. Nature Communications, 11, 5335(2020).

    [91] D CRUZ-DELGADO, J C ALVARADO-ZACARIAS, M A COOPER et al. Photonic lantern tip/tilt detector for adaptive optics systems. Optics Letters, 46, 3292-3295(2021).

    [92] J LIN, N JOVANOVIC, M P FITZGERALD. Design considerations of photonic lanterns for diffraction-limited spectrometry. Journal of the Optical Society of America B-Optical Physics, 38, A51-A63(2021).

    [93] J LIN, Y XIN, B NORRIS et al. Exoplanet detectionwith photonic lanterns for focal-plane wavefront sensing and control, 12185, 758-777(2022).

    [94] T A WRIGHT, S YEROLATSITIS, K HARRINGTON et al. All-fibre wavefront sensor. Monthly Notices of the Royal Astronomical Society, 514, 5422-5428(2022).

    [95] D G MACLACHLAN, R J HARRIS, I GRIS-SANCHEZ et al. Efficient photonic reformatting of celestial light for diffraction-limited spectroscopy. Monthly Notices of the Royal Astronomical Society, 464, 4950-4957(2017).

    [96] S G LEON-SAVAL, C H BETTERS, J R SALAZAR-GIL et al. Divide and conquer: an efficient solution to highly multimoded photonic lanterns from multicore fibres. Optics Express, 25, 17530-17540(2017).

    [97] S EIKENBERRY, M BENTZ, A GONZALEZ et al. PolyOculus: Low-cost Spectroscopy for the Community. Bulletin of the American Astronomical Society, 51, 124(2019).

    [98] C D MORAITIS, J C ALVARADO-ZACARIAS, R AMEZCUA-CORREA et al. Demonstration of high-efficiency photonic lantern couplers for PolyOculus. Applied Optics, 60, D93-D99(2021).

    [99] D CHOUDHURY, D K MCNICHOLL, A REPETTI et al. Computational optical imaging with a photonic lantern. Nature Communications, 11, 5217(2020).

    [100] D SWEENEY, B R M NORRIS, P TUTHILL et al. Learning the lantern: neural network applications to broadband photonic lantern modeling. Journal of Astronomical Telescopes, Instruments, and Systems, 7, 028007(2021).

    Tools

    Get Citation

    Copy Citation Text

    Zijian HAN, Xiangyan YUAN. Technique and Astronomical Applications of Photonic Lanterns(Invited)[J]. Acta Photonica Sinica, 2023, 52(5): 0552204

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for Advanced Science and Technology of Astronomical Optics

    Received: Mar. 8, 2023

    Accepted: May. 8, 2023

    Published Online: Jul. 19, 2023

    The Author Email: HAN Zijian (zjhan@niaot.ac.cn)

    DOI:10.3788/gzxb20235205.0552204

    Topics