Laser & Optoelectronics Progress, Volume. 60, Issue 4, 0400001(2023)

Advances in Optical Image Compression and Encryption Methods

Yi Qin1,2, Tianlong Man1, Yuhong Wan1、*, and Xing Wang2
Author Affiliations
  • 1Faculty of Science, Beijing University of Technology, Beijing 100124, China
  • 2College of Mechanical and Electrical Engineering, Nanyang Normal University, Nanyang 473061, Henan, China
  • show less
    References(120)

    [1] Hazer A, Yıldırım R. A review of single and multiple optical image encryption techniques[J]. Journal of Optics, 23, 113501(2021).

    [2] Javidi B, Carnicer A, Yamaguchi M et al. Roadmap on optical security[J]. Journal of Optics, 18, 083001(2016).

    [3] Liu S, Guo C L, Sheridan J T. A review of optical image encryption techniques[J]. Optics & Laser Technology, 57, 327-342(2014).

    [4] Alfalou A, Brosseau C. Optical image compression and encryption methods[J]. Advances in Optics and Photonics, 1, 589-636(2009).

    [5] Chen W, Javidi B, Chen X D. Advances in optical security systems[J]. Advances in Optics and Photonics, 6, 120-155(2014).

    [6] Wu K N, Hu J S, Wu X. Optical encryption for information security[J]. Laser & Optoelectronics Progress, 45, 30-38(2008).

    [7] Peng X, Wei H Z, Zhang P[M]. Introduction to optical security(2008).

    [8] Bao Z J, Xue R. Optical image encryption method based on autoencoder[J]. Laser & Optoelectronics Progress, 58, 2210011(2021).

    [9] Tao Y, Zhu Y P, Yang D Y et al. Remote optical information authentication system based on visual cryptography[J]. Acta Optica Sinica, 41, 1607001(2021).

    [10] Wang Y, Niu H W. Adaptive image block hiding technology based on optical spatial-frequency domain transform[J]. Laser & Optoelectronics Progress, 58, 1609001(2021).

    [11] Refregier P, Javidi B. Optical image encryption based on input plane and Fourier plane random encoding[J]. Optics Letters, 20, 767-769(1995).

    [12] Situ G H, Zhang J J. Double random-phase encoding in the Fresnel domain[J]. Optics Letters, 29, 1584-1586(2004).

    [13] Unnikrishnan G, Joseph J, Singh K. Optical encryption by double-random phase encoding in the fractional Fourier domain[J]. Optics Letters, 25, 887-889(2000).

    [14] Peng X, Zhang P, Wei H Z et al. Known-plaintext attack on optical encryption based on double random phase keys[J]. Optics Letters, 31, 1044-1046(2006).

    [15] Liao M H, Zheng S S, Pan S X et al. Deep-learning-based ciphertext-only attack on optical double random phase encryption[J]. Opto-Electronic Advances, 12-23(2021).

    [16] Liu X L, Wu J C, He W Q et al. Vulnerability to ciphertext-only attack of optical encryption scheme based on double random phase encoding[J]. Optics Express, 23, 18955-18968(2015).

    [17] Cheng X C, Cai L Z, Wang Y R et al. Security enhancement of double-random phase encryption by amplitude modulation[J]. Optics Letters, 33, 1575-1577(2008).

    [18] Jiao S M, Zhuang Z Y, Zhou C Y et al. Security enhancement of double random phase encryption with a hidden key against ciphertext only attack[J]. Optics Communications, 418, 106-114(2018).

    [19] Nomura T, Javidi B. Optical encryption using a joint transform correlator architecture[J]. Optical Engineering, 39, 2031-2035(2000).

    [20] Clemente P, Durán V, Torres-Company V et al. Optical encryption based on computational ghost imaging[J]. Optics Letters, 35, 2391-2393(2010).

    [21] Zhang Y, Wang B. Optical image encryption based on interference[J]. Optics Letters, 33, 2443-2445(2008).

    [22] Javidi B, Nomura T. Securing information by use of digital holography[J]. Optics Letters, 25, 28-30(2000).

    [23] Shi Y S, Li T, Wang Y L et al. Optical image encryption via ptychography[J]. Optics Letters, 38, 1425-1427(2013).

    [24] Maniccam S S, Bourbakis N G. Lossless image compression and encryption using SCAN[J]. Pattern Recognition, 34, 1229-1245(2001).

    [25] Zhou N R, Zhang A D, Zheng F et al. Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing[J]. Optics & Laser Technology, 62, 152-160(2014).

    [26] Schonberg D, Draper S C, Yeo C et al. Toward compression of encrypted images and video sequences[J]. IEEE Transactions on Information Forensics and Security, 3, 749-762(2008).

    [27] Zhang X P, Ren Y L, Shen L Q et al. Compressing encrypted images with auxiliary information[J]. IEEE Transactions on Multimedia, 16, 1327-1336(2014).

    [28] Situ G H, Zhang J J. Multiple-image encryption by wavelength multiplexing[J]. Optics Letters, 30, 1306-1308(2005).

    [29] Durán V, Clemente P, Torres-Company V et al. Optical encryption with compressive ghost imaging[C](2011).

    [30] Naughton T J, Javidi B. Compression of encrypted three-dimensional objects using digital holography[J]. Optical Engineering, 43, 2233-2238(2004).

    [31] Gerchberg R W. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 35, 237-246(1972).

    [32] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements[J]. Nature, 494, 68-71(2013).

    [33] Georgi P, Wei Q S, Sain B et al. Optical secret sharing with cascaded metasurface holography[J]. Science Advances, 7, eabf9718(2021).

    [34] Li Q, Meng X, Yin Y et al. A multi-image encryption based on sinusoidal coding frequency multiplexing and deep learning[J]. Sensors, 21, 6178(2021).

    [35] Trejos S, Barrera J F, Velez A et al. Optical approach for the efficient data volume handling in experimentally encrypted data[J]. Journal of Optics, 18, 065702(2016).

    [36] Ahmed N, Natarajan T, Rao K R. Discrete cosine transform[J]. IEEE Transactions on Computers, C-23, 90-93(1974).

    [37] Sayood K[M]. Introduction to data compression(2017).

    [38] Shechtman Y, Eldar Y C, Cohen O et al. Phase retrieval with application to optical imaging: a contemporary overview[J]. IEEE Signal Processing Magazine, 32, 87-109(2015).

    [39] Yang G Z, Gu B Y. On the amplitude-phase retrieval problem in optical systems[J]. Acta Physica Sinica, 30, 410-413(1981).

    [40] Candes E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 25, 21-30(2008).

    [41] Baraniuk R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 24, 118-121(2007).

    [42] Liu Z J, Zhang Y, Zhao H F et al. Optical multi-image encryption based on frequency shift[J]. Optik, 122, 1010-1013(2011).

    [43] Deng P K, Diao M, Shan M G et al. Multiple-image encryption using spectral cropping and spatial multiplexing[J]. Optics Communications, 359, 234-239(2016).

    [44] Alfalou A, Brosseau C. Exploiting root-mean-square time-frequency structure for multiple-image optical compression and encryption[J]. Optics Letters, 35, 1914-1916(2010).

    [45] Alfalou A, Brosseau C, Abdallah N. Simultaneous compression and encryption of color video images[J]. Optics Communications, 338, 371-379(2015).

    [46] Alfalou A, Brosseau C, Abdallah N et al. Simultaneous fusion, compression, and encryption of multiple images[J]. Optics Express, 19, 24023-24029(2011).

    [47] Jridi M, Alfalou A. Real-time and encryption efficiency improvements of simultaneous fusion, compression and encryption method based on chaotic generators[J]. Optics and Lasers in Engineering, 102, 59-69(2018).

    [48] Qin Y, Gong Q, Wang Z P et al. Optical multiple-image encryption in diffractive-imaging-based scheme using spectral fusion and nonlinear operation[J]. Optics Express, 24, 26877-26886(2016).

    [49] Ngo N Q. Optical chirp z-transform processor: design and application[J]. Journal of Lightwave Technology, 33, 2213-2221(2015).

    [50] Mosso E, Bolognini N. Dynamic multiple-image encryption based on chirp z-transform[J]. Journal of Optics, 21, 035704(2019).

    [51] Mosso E, Suárez O, Bolognini N. Asymmetric multiple-image encryption system based on a chirp z-transform[J]. Applied Optics, 58, 5674-5680(2019).

    [52] Wu J J, Li S W. Optical multiple-image compression-encryption via single-pixel Radon transform[J]. Applied Optics, 59, 9744-9754(2020).

    [53] Qin W, Peng X. Asymmetric cryptosystem based on phase-truncated Fourier transforms[J]. Optics Letters, 35, 118-120(2010).

    [54] Zhang L H, Wang Y, Zhang D W. Research on multiple-image encryption mechanism based on Radon transform and ghost imaging[J]. Optics Communications, 504, 127494(2022).

    [55] Lu P, Xu Z Y, Lu X et al. Digital image information encryption based on compressive sensing and double random-phase encoding technique[J]. Optik, 124, 2514-2518(2013).

    [56] Liu X Y, Cao Y P, Lu P et al. Optical image encryption technique based on compressed sensing and Arnold transformation[J]. Optik, 124, 6590-6593(2013).

    [57] Wang J, Wang Q H, Hu Y H. Image encryption using compressive sensing and detour cylindrical diffraction[J]. IEEE Photonics Journal, 10, 7801014(2018).

    [58] Deepan B, Quan C, Wang Y et al. Multiple-image encryption by space multiplexing based on compressive sensing and the double-random phase-encoding technique[J]. Applied Optics, 53, 4539-4547(2014).

    [59] Zhou N R, Li H L, Wang D et al. Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform[J]. Optics Communications, 343, 10-21(2015).

    [60] Yi J W, Tan G Z. Optical compression and encryption system combining multiple measurement matrices with fractional Fourier transform[J]. Applied Optics, 54, 10650-10658(2015).

    [61] Yang X L, Wu H Z, Yin Y K et al. Multiple-image encryption base on compressed coded aperture imaging[J]. Optics and Lasers in Engineering, 127, 105976(2020).

    [62] Ni R J, Wang F, Wang J et al. Multi-image encryption based on compressed sensing and deep learning in optical gyrator domain[J]. IEEE Photonics Journal, 13, 7800116(2021).

    [63] Situ G, Zhang J. Position multiplexing for multiple-image encryption[J]. Journal of Optics A: Pure and Applied Optics, 8, 391-397(2006).

    [64] Amaya D, Tebaldi M, Torroba R et al. Digital color encryption using a multi-wavelength approach and a joint transform correlator[J]. Journal of Optics A: Pure and Applied Optics, 10, 104031(2008).

    [65] Amaya D, Tebaldi M, Torroba R et al. Wavelength multiplexing encryption using joint transform correlator architecture[J]. Applied Optics, 48, 2099-2104(2009).

    [66] Qin Y, Gong Q. Interference-based multiple-image encryption with silhouette removal by position multiplexing[J]. Applied Optics, 52, 3987-3992(2013).

    [67] Xiao Y L, Su X Y, Li S K et al. Key rotation multiplexing for multiple-image optical encryption in the Fresnel domain[J]. Optics & Laser Technology, 43, 889-894(2011).

    [68] Rueda E, Ramírez J F B, Henao R H et al. Lateral shift multiplexing with a modified random mask in a joint transform correlator encrypting architecture[J]. Optical Engineering, 48, 027006(2009).

    [69] Chen Q, Shen X J, Dou S F et al. Topological charge number multiplexing for JTC multiple-image encryption[J]. Optics Communications, 412, 155-160(2018).

    [70] Shi Y Y, Liu Y W, Sheng W et al. Multiple-image double-encryption via 2D rotations of a random phase mask with spatially incoherent illumination[J]. Optics Express, 27, 26050-26059(2019).

    [71] Mosso F, Barrera J F, Tebaldi M et al. All-optical encrypted movie[J]. Optics Express, 19, 5706-5712(2011).

    [72] He W Q, Peng X, Meng X F. Optical multiple-image hiding based on interference and grating modulation[J]. Journal of Optics, 14, 075401(2012).

    [73] Qin Y, Wang Z P, Pan Q N et al. Optical color-image encryption in the diffractive-imaging scheme[J]. Optics and Lasers in Engineering, 77, 191-202(2016).

    [74] Shen X J, Lin C, Kong D Z. Fresnel-transform holographic encryption based on angular multiplexing and random-amplitude mask[J]. Optical Engineering, 51, 068201(2012).

    [75] Xi S X, Yu N N, Wang X L et al. Optical encryption scheme for multiple-image based on spatially angular multiplexing and computer generated hologram[J]. Optics and Lasers in Engineering, 127, 105953(2020).

    [76] Li W, Chang X Y, Yan A M et al. Asymmetric multiple image elliptic curve cryptography[J]. Optics and Lasers in Engineering, 136, 106319(2021).

    [77] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-444(2015).

    [78] Lucas A, Iliadis M, Molina R et al. Using deep neural networks for inverse problems in imaging: beyond analytical methods[J]. IEEE Signal Processing Magazine, 35, 20-36(2018).

    [79] Dong C, Deng Y B, Loy C C et al. Compression artifacts reduction by a deep convolutional network[C], 576-584(2015).

    [80] Jiao S M, Jin Z, Chang C L et al. Compression of phase-only holograms with JPEG standard and deep learning[J]. Applied Sciences, 8, 1258(2018).

    [81] Shimobaba T, Blinder D, Makowski M et al. Dynamic-range compression scheme for digital hologram using a deep neural network[J]. Optics Letters, 44, 3038-3041(2019).

    [82] Qin Y, Wan Y H, Wan S J et al. Optical compressive encryption via deep learning[J]. IEEE Photonics Journal, 13, 7800208(2021).

    [83] Yuan S, Yang Y R, Liu X M et al. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging[J]. Optics and Lasers in Engineering, 100, 105-110(2018).

    [84] Zhu J N, Yang X L, Meng X F et al. Optical image encryption scheme with multiple light paths based on compressive ghost imaging[J]. Journal of Modern Optics, 65, 306-313(2018).

    [85] Zhang C G, Han B N, He W Q et al. A novel compressive optical encryption via single-pixel imaging[J]. IEEE Photonics Journal, 11, 7801208(2019).

    [86] Zhao S M, Wang L, Liang W Q et al. High performance optical encryption based on computational ghost imaging with QR code and compressive sensing technique[J]. Optics Communications, 353, 90-95(2015).

    [87] Zhang L H, Pan Z L, Wu L Y et al. High-performance compression and double cryptography based on compressive ghost imaging with the fast Fourier transform[J]. Optics and Lasers in Engineering, 86, 329-337(2016).

    [88] Li X Y, Meng X F, Yang X L et al. Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme[J]. Optics and Lasers in Engineering, 102, 106-111(2018).

    [89] Li X Y, Meng X F, Yang X L et al. Multiple-image encryption based on compressive ghost imaging and coordinate sampling[J]. IEEE Photonics Journal, 8, 3900511(2016).

    [90] Li J, Li J S, Pan Y Y et al. Compressive optical image encryption[J]. Scientific Reports, 5, 10374(2015).

    [91] Li J, Jia B, Dai X et al. Compressive optical image encryption using phase-shifting interferometry on a joint transform correlator[J]. Optica Applicata, 47, 245-256(2017).

    [92] Li J, Li H B, Li J S et al. Compressive optical image encryption with two-step-only quadrature phase-shifting digital holography[J]. Optics Communications, 344, 166-171(2015).

    [93] Chen W, Chen X D. Optical multiple-image encryption based on multiplane phase retrieval and interference[J]. Journal of Optics, 13, 115401(2011).

    [94] Chen W. Optical multiple-image encryption using three-dimensional space[J]. IEEE Photonics Journal, 8, 6900608(2016).

    [95] Lü W J, Sun X K, Yang D Y et al. Optical multiple information hiding via azimuth multiplexing[J]. Optics and Lasers in Engineering, 141, 106574(2021).

    [96] Lu Z, Lü W J, Zhu Y P et al. Optical information encryption based on partially-update iterative system with azimuth multiplexing[J]. Optics Communications, 510, 127899(2022).

    [97] Wu J J, Wang J C, Nie Y G et al. Multiple-image optical encryption based on phase retrieval algorithm and fractional Talbot effect[J]. Optics Express, 27, 35096-35107(2019).

    [98] Xiao Y L, Zhou X, Yuan S et al. Multiple-image optical encryption: an improved encoding approach[J]. Applied Optics, 48, 2686-2692(2009).

    [99] Huang J J, Hwang H E, Chen C Y et al. Lensless multiple-image optical encryption based on improved phase retrieval algorithm[J]. Applied Optics, 51, 2388-2394(2012).

    [100] Liu Z J, Liu S T. Double image encryption based on iterative fractional Fourier transform[J]. Optics Communications, 275, 324-329(2007).

    [101] Li T Y, Huang L L, Wang Y T. The principle and research progress of metasurfaces[J]. Chinese Optics, 10, 523-540, 701(2017).

    [102] Zheng G X, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 10, 308-312(2015).

    [103] Zhao R Z, Sain B, Wei Q S et al. Multichannel vectorial holographic display and encryption[J]. Light: Science & Applications, 7, 95(2018).

    [104] Zhou H Q, Sain B, Wang Y T et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography[J]. ACS Nano, 14, 5553-5559(2020).

    [105] Chen W, Chen X D, Sheppard C J R. Optical image encryption based on diffractive imaging[J]. Optics Letters, 35, 3817-3819(2010).

    [106] Chen W, Chen X D, Anand A et al. Optical encryption using multiple intensity samplings in the axial domain[J]. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 30, 806-812(2013).

    [107] Qin Y, Gong Q, Wang Z P. Simplified optical image encryption approach using single diffraction pattern in diffractive-imaging-based scheme[J]. Optics Express, 22, 21790-21799(2014).

    [108] Bao P, Zhang F C, Pedrini G et al. Phase retrieval using multiple illumination wavelengths[J]. Optics Letters, 33, 309-311(2008).

    [109] Batey D J, Claus D, Rodenburg J M. Information multiplexing in ptychography[J]. Ultramicroscopy, 138, 13-21(2014).

    [110] He X L, Jiang Z L, Kong Y et al. Optical multi-image encryption based on focal length multiplexing and multimode phase retrieval[J]. Applied Optics, 59, 7801-7812(2020).

    [111] He X L, Tao H, Liu C et al. Single-shot color image encryption based on mixed state diffractive imaging[J]. Optics and Lasers in Engineering, 107, 112-118(2018).

    [112] He X L, Tao H, Jiang Z L et al. Single-shot optical multiple-image encryption by jointly using wavelength multiplexing and position multiplexing[J]. Applied Optics, 59, 9-15(2019).

    [113] Di H, Zheng K F, Zhang X et al. Multiple-image encryption by compressive holography[J]. Applied Optics, 51, 1000-1009(2012).

    [114] Wan Y H, Wu F, Yang J H et al. Multiple-image encryption based on compressive holography using a multiple-beam interferometer[J]. Optics Communications, 342, 95-101(2015).

    [115] Zhang Y S, Zhang L Y. Exploiting random convolution and random subsampling for image encryption and compression[J]. Electronics Letters, 51, 1572-1574(2015).

    [116] Kamali S M, Arbabi E, Arbabi A et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles[J]. Physical Review X, 7, 041056(2017).

    [117] Wang B, Sun C C, Su W C et al. Shift-tolerance property of an optical double-random phase-encoding encryption system[J]. Applied Optics, 39, 4788-4793(2000).

    [118] Rueda E, Rios C, Barrera J F et al. Experimental multiplexing approach via code key rotations under a joint transform correlator scheme[J]. Optics Communications, 284, 2500-2504(2011).

    [119] Barrera J F, Tebaldi M, Ríos C et al. Experimental multiplexing of encrypted movies using a JTC architecture[J]. Optics Express, 20, 3388-3393(2012).

    [120] Dou S F, Shen X J, Zhou B et al. Experimental research on optical image encryption system based on joint Fresnel transform correlator[J]. Optics & Laser Technology, 112, 56-64(2019).

    Tools

    Get Citation

    Copy Citation Text

    Yi Qin, Tianlong Man, Yuhong Wan, Xing Wang. Advances in Optical Image Compression and Encryption Methods[J]. Laser & Optoelectronics Progress, 2023, 60(4): 0400001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: May. 17, 2022

    Accepted: Jul. 14, 2022

    Published Online: Feb. 14, 2023

    The Author Email: Wan Yuhong (yhongw@bjut.edu.cn)

    DOI:10.3788/LOP221626

    Topics