Optics and Precision Engineering, Volume. 30, Issue 21, 2608(2022)

Self-traceable grating reference material and application

Xiao DEND... Tongbao LI and Xinbin CHENG* |Show fewer author(s)
Author Affiliations
  • Institute of Precision Optical Engineering, MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Shanghai Professional Technical Service Platform for Full-Spectrum and High-Performance Optical Thin Film Devices and Applications, School of Physics Science and Engineering, Tongji University, Shanghai200092, China
  • show less
    References(57)

    [1] [1] 1李同保. 纳米计量与传递标准[J]. 上海计量测试, 2005, 32(1): 8-13. doi: 10.3969/j.issn.1673-2235.2005.01.001LIT B. Nanometrology and transfer standard[J]. Shanghai Measurement and Testing, 2005, 32(1): 8-13. (in Chinese). doi: 10.3969/j.issn.1673-2235.2005.01.001

    [2] S V N T KUCHIBHATLA, A S KARAKOTI, D BERA et al. One dimensional nanostructured materials. Progress in Materials Science, 52, 699-913(2007).

    [3] Y CHEN, Z X FAN, Z C ZHANG et al. Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chemical Reviews, 118, 6409-6455(2018).

    [4] P PANDEY. Role of nanotechnology in electronics: a review of recent developments and patents. Recent Patents on Nanotechnology, 16, 45-66(2022).

    [5] K KOBAYASHI, A ISHIKAWA. Quantum coherent nanodynamics by the interplay of localized photons, electron-hole pairs, and phonons. Progress in Quantum Electronics, 59, 19-30(2018).

    [6] K L FAN, J JIAO, Z G HU et al. Research status and key scientific issues of nanobiology. Scientia Sinica Vitae, 50, 778-787(2020).

    [7] S G KLOCHKOV, M E NEGANOVA, V N NIKOLENKO et al. Implications of nanotechnology for the treatment of cancer: recent advances. Seminars in Cancer Biology, 69, 190-199(2021).

    [8] S BAYDA, M ADEEL, T TUCCINARDI et al. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules (Basel, Switzerland), 25, 112(2019).

    [9] [9] 9邓晓. 一维纳米节距计量标准的研制[D]. 上海: 同济大学, 2016.DENGX. Fabrication of One-dimensional Metrological Pitch Standards at Nanoscale[D].Shanghai: Tongji University, 2016. (in Chinese)

    [10] [10] 10赵四化. 新型纳米材料在微电子技术中的应用探究[J]. 微电子学, 2013, 43(4): 577-580. doi: 10.3969/j.issn.1004-3365.2013.04.031ZHAOS H. Application of new nanometer materials in microelectronics[J]. Microelectronics, 2013, 43(4): 577-580. (in Chinese). doi: 10.3969/j.issn.1004-3365.2013.04.031

    [11] C BACKES, R J SMITH, N MCEVOY et al. Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets. Nature Communications, 5, 4576(2014).

    [12] Z J GU, X DENG, Y N CAI et al. A new method to calibrate an atomic force microscope with the self-traceable chromium grating fabricated by atomic lithography, 11617, 771-777(2020).

    [13] X DENG, G L DAI, J LIU et al. A new type of nanoscale reference grating manufactured by combined laser-focused atomic deposition and X-ray interference lithography and its use for calibrating a scanning electron microscope. Ultramicroscopy, 226, 113293(2021).

    [14] [14] 14高思田. 计量型原子力显微镜的研究[D]. 天津: 天津大学, 2007.GAOS T. Study on Measurement Atomic Force Microscope (AFM)[D]. Tianjin: Tianjin University, 2007. (in Chinese)

    [15] G L DAI, L KOENDERS, J FLUEGGE et al. Two approaches for realizing traceability in nanoscale dimensional metrology. Optical Engineering, 55(2016).

    [16] H BOSSE, B BODERMANN, G L DAI et al. Challenges in nanometrology: highprecision measurement of position and size. Tm-Technisches Messen, 82, 346-358(2015).

    [17] [17] 17王岳宇. 纳米计量的溯源与传递[J]. 宇航计测技术, 2010, 30(1): 75-79. doi: 10.3969/j.issn.1000-7202.2010.01.017WANGY Y. Traceable transfer for nanometrology[J]. Journal of Astronautic Metrology and Measurement, 2010, 30(1): 75-79. (in Chinese). doi: 10.3969/j.issn.1000-7202.2010.01.017

    [18] D P SANDERS. Advances in patterning materials for 193 nm immersion lithography. Chemical Reviews, 110, 321-360(2010).

    [19] Y F CHEN. Nanofabrication by electron beam lithography and its applications: a review. Microelectronic Engineering, 135, 57-72(2015).

    [20] D J NAGEL. Ultraviolet and X-ray lithography. Proceedings of the Society of Photo-optical Instrumentation Engineers, 279, 98-110(1981).

    [21] [21] 21魏玉平, 丁玉成, 李长河. 纳米压印光刻技术综述[J]. 制造技术与机床, 2012(8): 87-94. doi: 10.3969/j.issn.1005-2402.2012.08.028WEIY P, DINGY CH, LICH H. Overview of nano-imprinting technology[J]. Manufacturing Technology & Machine Tool, 2012(8): 87-94. (in Chinese). doi: 10.3969/j.issn.1005-2402.2012.08.028

    [22] I MISUMI, J I KITTA, H FUJIMOTO et al. 25 nm pitch comparison between a traceable X-ray diffractometer and a metrological atomic force microscope. Measurement Science and Technology, 23(2012).

    [23] J U XIN, W ZHONG-PING. Atom lithography. Physics, 38, 1-10(2009).

    [24] Y S HUO, W Q CAI, Q L ZENG et al. Experimental study on metastable-neon atom lithography. Chinese Journal of Lasers, 30, 22-24(2003).

    [25] J J MCCLELLAND, R E SCHOLTEN, E C PALM et al. Laser-focused atomic deposition. Science, 262, 877-880(1993).

    [26] ETE SLIGTE, B SMEETS, K M R VAN DER STAM et al. Atom lithography of Fe. Applied Physics Letters, 85, 4493-4495(2004).

    [27] R W MCGOWAN, D M GILTNER, S A LEE. Light force cooling, focusing, and nanometer-scale deposition of aluminum atoms. Optics Letters, 20, 2535-2537(1995).

    [28] R OHMUKAI, S URABE, M WATANABE. Atom lithography with ytterbium beam. Applied Physics B, 77, 415-419(2003).

    [29] K S JOHNSON, J H THYWISSEN, N H DEKKER et al. Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit. Science, 280, 1583-1586(1998).

    [30] T SCHULZE, B BREZGER, P O SCHMIDT et al. Sub-100 nm structures by neutral atom lithography. Microelectronic Engineering, 46, 105-108(1999).

    [31] J J MCCLELLAND, R J CELOTTA. Laser-focused atomic deposition - nanofabrication via atom optics. Thin Solid Films, 367, 25-27(2000).

    [32] J J MCCLELLAND, W R ANDERSON, C C BRADLEY et al. Accuracy of nanoscale pitch standards fabricated by laser-focused atomic deposition. Journal of Research of the National Institute of Standards and Technology, 108, 99-113(2003).

    [33] R GUPTA, J J MCCLELLAND, Z J JABBOUR et al. Nanofabrication of a two-dimensional array using laser-focused atomic deposition. Applied Physics Letters, 67, 1378-1380(1995).

    [34] X DENG, J LIU, L ZHU et al. Natural Square ruler at nanoscale. Applied Physics Express, 11(2018).

    [35] [35] 35张宝武, 李同保, 郑春兰. 52Cr原子束激光生荧光稳频技术[J]. 光电子技术与信息, 2005(6): 16-21.ZHANGB W, LIT B, ZHENGCH L. Frequency stabilization for laser by LIF of 52Cr atomic beam[J]. Optoelectronic Technology & Information, 2005(6): 16-21. (in Chinese)

    [36] [36] 36张宝武, 李同保, 郑春兰, 等. 铬原子束激光感生荧光稳频技术理论分析[J]. 中国测试技术, 2006, 32(3): 12-15. doi: 10.3969/j.issn.1674-5124.2006.03.004ZHANGB W, LIT B, ZHENGCH L, et al. Theoretic analysis on laser frequency stabilization derived from Cr atomic beam laser induced fluorescence[J]. China Meas Urement, 2006, 32(3): 12-15. (in Chinese). doi: 10.3969/j.issn.1674-5124.2006.03.004

    [37] J J MCCLELLAND. Atom-optical properties of a standing-wave light field. Journal of the Optical Society of America B, 12, 1761(1995).

    [38] U DRODOFSKY, J STUHLER, B BREZGER et al. Nanometerscale lithography with chromium atoms using light forces. Microelectronic Engineering, 35, 285-288(1997).

    [39] G MYSZKIEWICZ, J HOHLFELD, A J TOONEN et al. Laser manipulation of iron for nanofabrication. Applied Physics Letters, 85, 3842-3844(2004).

    [40] X DENG, Y MA, P P ZHANG et al. Investigation of shadow effect in laser-focused atomic deposition. Applied Surface Science, 261, 464-469(2012).

    [41] T ZHANG, C YIN, Y J ZHAO et al. Nanofabrication of millimeter-level nanostructure via laser-focused atomic deposition. Applied Physics Express, 11(2018).

    [42] D JÜRGENS. Quantum Effects in Atomic Nanofabrication Using Light Forces. Konstanz: Konstanz University(2004).

    [43] [43] 43邓晓, 程鑫彬, 谭文, 等. 基于扫描原子光刻技术的大面积自溯源光栅制备方法: CN113777685A[P]. 2021-12-10. doi: 10.1007/s41871-022-00140-yDENGX, CHENGX B, TANW, et al. Large-area self-tracing grating preparation method based on scanning atom photoetching technology: CN113777685A[P]. 2021-12-10. (in Chinese). doi: 10.1007/s41871-022-00140-y

    [44] X DENG, W TAN, Z H TANG et al. Scanning and splicing atom lithography for self-traceable nanograting fabrication. Nanomanufacturing and Metrology, 5, 179-187(2022).

    [45] S J H PETRA, K A H VAN LEEUWEN, L FEENSTRA et al. Numerical simulations on the motion of atoms travelling through a standing-wave light field. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 27, 83-91(2003).

    [46] S M FENG, H G WINFUL. Physical origin of the Gouy phase shift. Optics Letters, 26, 485-487(2001).

    [47] [47] 47程鑫彬, 邓晓, 李同保, 等. 一种二维原子光刻栅格结构制备方法: CN108919398A[P]. 2018-11-30.CHENGX B, DENGX, LIT B, et al. Method for preparing two-dimensional atomic lithography grid structure: CN108919398A[P]. 2018-11-30. (in Chinese)

    [48] J GARNAES, K DIRSCHERL. NANO5-2D grating-final report. Metrologia, 45(2008).

    [49] B PÄIVÄNRANTA, A LANGNER, E KIRK et al. Sub-10 nm patterning using EUV interference lithography. Nanotechnology, 22, 375302(2011).

    [50] M G MOHARAM, T K GAYLORD. Rigorous coupled-wave analysis of metallic surface-relief gratings. Journal of the Optical Society of America A, 3, 1780-1787(1986).

    [51] J LIU, X DENG, Y N CAI et al. Study on diffraction efficiency of Cr nanograting prepared by laser-focused atomic deposition, 11617, 321-326(2020).

    [52] [52] 52虎将, 蔡长龙, 刘卫国, 等. ICP刻蚀Si/PMMA选择比工艺研究[J]. 微处理机, 2014, 35(1): 9-11, 14. doi: 10.3969/j.issn.1002-2279.2014.01.003HUJ, CAICH L, LIUW G, et al. Technical study on selection ratio of Si/PMMA based on ICP etching[J]. Microprocessors, 2014, 35(1): 9-11, 14. (in Chinese). doi: 10.3969/j.issn.1002-2279.2014.01.003

    [53] J LIU, J ZHAO, X DENG et al. Hybrid application of laser-focused atomic deposition and extreme ultraviolet interference lithography methods for manufacturing of self-traceable nanogratings. Nanotechnology, 32, 175301(2021).

    [54] R SCHÖDEL, A YACOOT, A LEWIS. The new mise en pratique for the metre-a review of approaches for the practical realization of traceable length metrology from 10–11 m to 1013 M. Metrologia, 58(2021).

    [55] [55] 55李伟, 施玉书, 李琪, 等. 单晶硅晶格间距的测量技术进展及应用[J]. 人工晶体学报, 2021, 50(1): 151-157, 178.LIW, SHIY SH, LIQ, et al. Progress and application on the measurement technique of single crystal silicon lattice spacing[J]. Journal of Synthetic Crystals, 2021, 50(1): 151-157, 178. (in Chinese)

    [56] [56] 56韩志国,李锁印,冯亚南,等. 纳米级线宽标准样片的设计与制备[J]. 计算机与数字工程, 2021,49(4):664-668. doi: 10.3969/j.issn.1672-9722.2021.04.011HANZG, LISY, FENGYN, et al. Design and development of nanometer line width standard[J]. Computer & Digital Engineering, 2021,49(4):664-668. (in Chinese). doi: 10.3969/j.issn.1672-9722.2021.04.011

    [57] [57] 57吴子若, 蔡燕妮, 王星睿, 等. 基于多层膜光栅的AFM探针结构表征研究[J]. 红外与激光工程, 2020, 49(2): 229-234. doi: 10.3788/irla202049.0213001WUZ R, CAIY N, WANGX R, et al. Investigation of AFM tip characterization based on multilayer gratings[J]. Infrared and Laser Engineering, 2020, 49(2): 229-234. (in Chinese). doi: 10.3788/irla202049.0213001

    Tools

    Get Citation

    Copy Citation Text

    Xiao DEND, Tongbao LI, Xinbin CHENG. Self-traceable grating reference material and application[J]. Optics and Precision Engineering, 2022, 30(21): 2608

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 16, 2022

    Accepted: --

    Published Online: Nov. 28, 2022

    The Author Email: CHENG Xinbin (chengxb@tongji.edu.cn)

    DOI:10.37188/OPE.20223021.2608

    Topics