Optics and Precision Engineering, Volume. 28, Issue 10, 2252(2020)
Three-dimensional coordinate measurement of microstructures based on nano measuring machine
[1] [1] MANSKE E, JAGER G, HAUSOTTE T, et al.. Recent developments and challenges of nanopositioning and nanomeasuring technology[J]. Measurement Science and Technology, 2012, 23(7): 074001.
MANSKE E, JAGER G, HAUSOTTE T, et al.. Recent developments and challenges of nanopositioning and nanomeasuring technology[J]. Measurement Science and Technology, 2012, 23(7): 074001.
[2] [2] LI R J, XU P, WANG P Y, et al.. Development of a micro/nano probing system using double elastic mechanisms[J]. Sensors, 2018, 18(12): 4229.
LI R J, XU P, WANG P Y, et al.. Development of a micro/nano probing system using double elastic mechanisms[J]. Sensors, 2018, 18(12): 4229.
[3] [3] YANG W J, LIU X J, LU W L, et al.. Influence of probe dynamic characteristics on the scanning speed for white light interference based AFM[J]. Precision Engineering, 2018, 51: 348-352.
YANG W J, LIU X J, LU W L, et al.. Influence of probe dynamic characteristics on the scanning speed for white light interference based AFM[J]. Precision Engineering, 2018, 51: 348-352.
[4] [4] PEGGS G N, LEWIS A J, OLDFIELD S. Design for a compact high-accuracy CMM[J]. CIRP Annals-Manufacturing Technology, 1999, 48(1): 417-420.
PEGGS G N, LEWIS A J, OLDFIELD S. Design for a compact high-accuracy CMM[J]. CIRP Annals-Manufacturing Technology, 1999, 48(1): 417-420.
[5] [5] DAI G L, BUTEFISCH S, POHLENZ F, et al.. A high precision micro/nano CMM using piezoresistive tactile probes[J]. Measurement Science and Technology, 2009, 20(8): 1-9.
DAI G L, BUTEFISCH S, POHLENZ F, et al.. A high precision micro/nano CMM using piezoresistive tactile probes[J]. Measurement Science and Technology, 2009, 20(8): 1-9.
[6] [6] FANG F Z, ZHANG X D, WECKENMANN A, et al.. Manufacturing and measurement of freeform optics[J]. CIRP Annals-Manufacturing Technology, 2013, 62(2): 823-846.
FANG F Z, ZHANG X D, WECKENMANN A, et al.. Manufacturing and measurement of freeform optics[J]. CIRP Annals-Manufacturing Technology, 2013, 62(2): 823-846.
[7] [7] SPAAN H, WIDDERSHOVEN I, DONKER R. Design and calibration of "Isara 400" ultra-precision CMM[J]. Opticals and Precision Engineering, 2011, 19(9): 2236-2241.
SPAAN H, WIDDERSHOVEN I, DONKER R. Design and calibration of "Isara 400" ultra-precision CMM[J]. Opticals and Precision Engineering, 2011, 19(9): 2236-2241.
[8] [8] GAO W, KIM S, BOSSE H, et al.. Measurement technologies for precision positioning[J]. CIRP Annals - Manufacturing Technology, 2015, 64(2): 773-796.
GAO W, KIM S, BOSSE H, et al.. Measurement technologies for precision positioning[J]. CIRP Annals - Manufacturing Technology, 2015, 64(2): 773-796.
[9] [9] VERMEULEN M, ROSIELLE P, SCHELLEKENS P. Design of a high-precision 3D-coordinate measuring machine[J]. CIRP Annals - Manufacturing Technology, 1998, 47(1): 447-450.
VERMEULEN M, ROSIELLE P, SCHELLEKENS P. Design of a high-precision 3D-coordinate measuring machine[J]. CIRP Annals - Manufacturing Technology, 1998, 47(1): 447-450.
[10] [10] MITUTOYO. UMAP vision system TYPE2 series 364-micro form measuring system[EB/OL]. http: //ecatalog.mitutoyo.com/ UMAP- Vision -System-TYPE2-Series-36 4-Micro-Form-Measuring-System-C1577.aspx, 2020.
MITUTOYO. UMAP vision system TYPE2 series 364-micro form measuring system[EB/OL]. http: //ecatalog.mitutoyo.com/ UMAP- Vision -System-TYPE2-Series-36 4-Micro-Form-Measuring-System-C1577.aspx, 2020.
[11] [11] FAN K C, LI R J, XU P. Design and verification of micro/nano-probes for coordinate measuring machines[J]. Nanomanufacturing and Metrology, 2019, 2: 1-15.
FAN K C, LI R J, XU P. Design and verification of micro/nano-probes for coordinate measuring machines[J]. Nanomanufacturing and Metrology, 2019, 2: 1-15.
[12] [12] CLAVERLEY J D, LEACH R K. Development of a three-dimensional vibrating tactile probe for miniature CMMs[J]. Precision Engineering, 2013, 37(2): 491-499.
CLAVERLEY J D, LEACH R K. Development of a three-dimensional vibrating tactile probe for miniature CMMs[J]. Precision Engineering, 2013, 37(2): 491-499.
[13] [13] GOO C, JUN M B G, SAITO A. Probing system for measurement of micro-scalecomponents[J]. Journal of Manufacturing Processes, 2012, 14(2): 174-180.
GOO C, JUN M B G, SAITO A. Probing system for measurement of micro-scalecomponents[J]. Journal of Manufacturing Processes, 2012, 14(2): 174-180.
[14] [14] JU B F, ZHU W L, ZHANG W. Note: Symmetric modulation methodology applied in improving the performance of scanning tunneling microscopy[J]. Review of Scientific Instruments, 2013, 84(12): 126107.
JU B F, ZHU W L, ZHANG W. Note: Symmetric modulation methodology applied in improving the performance of scanning tunneling microscopy[J]. Review of Scientific Instruments, 2013, 84(12): 126107.
[15] [15] ZHU W L, YANG S Y, JU B F, et al.. On-machine measurement of a slow slide servo diamond-machined 3D microstructure with a curved substrate[J]. Measurement Science and Technology, 2015, 26(7): 075003.
ZHU W L, YANG S Y, JU B F, et al.. On-machine measurement of a slow slide servo diamond-machined 3D microstructure with a curved substrate[J]. Measurement Science and Technology, 2015, 26(7): 075003.
Get Citation
Copy Citation Text
WU Jun-jie, LI Yuan. Three-dimensional coordinate measurement of microstructures based on nano measuring machine[J]. Optics and Precision Engineering, 2020, 28(10): 2252
Category:
Received: Apr. 7, 2020
Accepted: --
Published Online: Nov. 25, 2020
The Author Email: Jun-jie WU (wujunjie@simt.com.cn)