Acta Physica Sinica, Volume. 69, Issue 17, 174207-1(2020)

Analysis of ArF excimer laser system discharge characteristics in different buffer gases

Qian Wang1,2,3, Jiang-Shan Zhao1,2,3, Yuan-Yuan Fan1,2,3,4, Xin Guo1,2, and Yi Zhou1,2,3、*
Author Affiliations
  • 1Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100094, China
  • 2Beijing Excimer Laser Technology and Engineering Center, Beijing 100094, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4State Key Laboratory of Applied Optics, Changchun 130033, China
  • show less
    Figures & Tables(12)
    Simulation process of discharge dynamics of excimer.
    Discharge circuit.
    Waveforms of discharge voltage, current, and photon number density (He is the buffer gas).
    Waveforms of discharge voltage, current, and photon number density (Ne is the buffer gas).
    Electron number density spatial distribution: (a) He as the buffer gas; (b) Ne as the buffer gas.
    Waveforms of Ne+, Ne*, He+, He* number density.
    Waveforms of electron number density at 0.2 cm from cathode: (a) Considering photoionization; (b) without photoionization.
    Waveforms of discharge voltage, current, and photon number density with and without Xe.
    Waveforms of electron number density spatial distribution with Xe.
    Waveforms of photon number density with different Xe ratios.
    • Table 1. Plasma reaction process of ArF excimer laser system (He is the buffer gas).

      View table
      View in Article

      Table 1. Plasma reaction process of ArF excimer laser system (He is the buffer gas).

      反应类型反应过程反应系数参考文献
      电子碰撞反应Ar + e → Ar+ + 2e 计算玻尔兹曼方程得到
      Ar + e → Arex + e 计算玻尔兹曼方程得到
      Ar + e → Ar* + e 计算玻尔兹曼方程得到
      Ar* + e → Ar+ + 2e 计算玻尔兹曼方程得到
      F2 + e → F + F 计算玻尔兹曼方程得到
      He + e → He+ + 2e 计算玻尔兹曼方程得到
      He + e → Heex + e 计算玻尔兹曼方程得到
      He + e → He* + e 计算玻尔兹曼方程得到
      中性粒子反应Ar+ + 2 Ar → Ar2+ + Ar 2.5 × 10–31 cm6·s–1[15]
      Ar+ + F → ArF*1 × 10–6 cm3·s–1[15]
      Ar2+ + F→ ArF* + Ar1 × 10–6 cm3·s–1[15]
      Arex → Ar + 1.0 ns[15]
      Ar* + F2 → ArF* + F8 × 10–10 cm3·s–1[15]
      ArF*→Ar + F + 42 ns[15]
      受激辐射ArF* + → ArF + 24 × 10–16 cm3·s–1[15]
      光电离 + F → F + e 1 × 10–17 cm3[15]
      Arex + → Ar+ + e 1 × 10–18 cm3[15]
    • Table 2. Plasma reaction process of ArF excimer laser system (Ne is buffer gas).

      View table
      View in Article

      Table 2. Plasma reaction process of ArF excimer laser system (Ne is buffer gas).

      反应类型反应过程反应系数参考文献
      电子碰撞反应Ar + e → Ar+ + 2e 计算玻尔兹曼方程得到
      Ar + e → Arex + e 计算玻尔兹曼方程得到
      Ar + e → Ar* + e 计算玻尔兹曼方程得到
      Ar* + e → Ar+ + 2e 计算玻尔兹曼方程得到
      F2 + e → F + F 计算玻尔兹曼方程得到
      Ne* + e → Ne+ + 2e 计算玻尔兹曼方程得到
      Ne + e → Ne+ + 2e 计算玻尔兹曼方程得到
      Ne + e → Ne* + e 计算玻尔兹曼方程得到
      中性粒子反应Ne2* + e → 2e + Ne2+(9.75 × 10–9) × (abs(Te))0.71 × exp(–3.4/abs(Te)) [16]
      Ne2+ + e → Ne* + Ne (3.7 × 10–8) × (abs(Te))–0.43[16]
      Ar+ + 2Ar → Ar2+ + Ar 2.5 × 10–31 cm6·s–1[15]
      Ar+ + F → ArF*1 × 10–6 cm3·s–1[15]
      Ar2+ + F → ArF* + Ar1 × 10–6 cm3·s–1[15]
      Arex → Ar + 1.0 ns[15]
      Ar* + F2 → ArF* + F8 × 10–10 cm3·s–1[15]
      2Ne* → Ne+ + Ne + e 5 × 10–10 cm3·s–1[17]
      Ne+ + 2Ne →Ne2+ + Ne 4.4 × 10–32 cm6·s–1[17]
      Ne* + Ne + Ne → Ne2* + Ne 4 × 10–34 cm6·s–1[17]
      Ar + ArF* → 2Ar + F 9 e × 10-12 cm3·s–1[15]
      Ne + ArF* → Ar + Ne + F 1 × 10–12 cm3·s–1[17]
      F2 + ArF* → Ar + 3F 1.9 × 10–9 cm3·s–1[15]
      受激辐射ArF* + → ArF + 24 × 10–16 cm3·s–1[15]
      光电离 + F → F + e 1 × 10–17 cm3[15]
      Arex + → Ar++ e 1 × 10–18 cm3[15]
      Xe + ’→Xe++ e 阈值为 12.1 eV, 截面为1 × 10–16 cm2[18]
    Tools

    Get Citation

    Copy Citation Text

    Qian Wang, Jiang-Shan Zhao, Yuan-Yuan Fan, Xin Guo, Yi Zhou. Analysis of ArF excimer laser system discharge characteristics in different buffer gases[J]. Acta Physica Sinica, 2020, 69(17): 174207-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jan. 13, 2020

    Accepted: --

    Published Online: Jan. 4, 2021

    The Author Email:

    DOI:10.7498/aps.69.20200087

    Topics