Laser & Optoelectronics Progress, Volume. 62, Issue 18, 1817013(2025)

Research Progress of Fluorescent Molecular Imaging Probes in Urinary System Tumors (Invited)

Zixing Wang1,2,3, Pengyu Guo1,2,3、**, and Wanhai Xu1,3,4、*
Author Affiliations
  • 1National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150081, Heilongjiang , China
  • 2Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang , China
  • 3Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin 150081, Heilongjiang , China
  • 4Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang , China
  • show less
    References(68)

    [1] Bray F, Laversanne M, Sung H et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 74, 229-263(2024).

    [2] Voltaggio L, Cimino-Mathews A, Bishop J A et al[J]. Current concepts in the diagnosis and pathobiology of intraepithelial neoplasia: a review by organ system, 66, 408-436(2016).

    [3] Teoh J Y, Kamat A M, Black P C et al. Recurrence mechanisms of non-muscle-invasive bladder cancer: a clinical perspective[J]. Nature Reviews Urology, 19, 280-294(2022).

    [5] Lauwerends L J, van Driel P B A A, de Jong R J B et al. Real-time fluorescence imaging in intraoperative decision making for cancer surgery[J]. The Lancet Oncology, 22, e186-e195(2021).

    [6] Zhang Z Y, He K S, Chi C W et al. Intraoperative fluorescence molecular imaging accelerates the coming of precision surgery in China[J]. European Journal of Nuclear Medicine and Molecular Imaging, 49, 2531-2543(2022).

    [7] Tipirneni K E, Rosenthal E L, Moore L S et al. Fluorescence imaging for cancer screening and surveillance[J]. Molecular Imaging and Biology, 19, 645-655(2017).

    [9] Tanyi J L, Randall L M, Chambers S K et al. A phase III study of pafolacianine injection (OTL38) for intraoperative imaging of folate receptor-positive ovarian cancer[J]. Journal of Clinical Oncology, 41, 276-284(2023).

    [10] Zhang S D, Li Z H, Wang Q B et al. NIR‐II photothermally triggered “oxygen bomb” for hypoxic tumor programmed cascade therapy[J].

    [12] Sun T T, Han J F, Liu S et al. Tailor-made semiconducting polymers for second near-infrared photothermal therapy of orthotopic liver cancer[J]. ACS Nano, 13, 7345-7354(2019).

    [14] Kiss B, van den Berg N S, Ertsey R et al. CD47-targeted near-infrared photoimmunotherapy for human bladder cancer[J]. Clinical Cancer Research, 25, 3561-3571(2019).

    [15] Yang Y J, Yan X T, Li J W et al. CD47-targeted optical molecular imaging and near-infrared photoimmunotherapy in the detection and treatment of bladder cancer[J]. Molecular Therapy-Oncolytics, 24, 319-330(2022).

    [16] Lin T Y, Li Y P, Liu Q Q et al. Novel theranostic nanoporphyrins for photodynamic diagnosis and trimodal therapy for bladder cancer[J]. Biomaterials, 104, 339-351(2016).

    [17] He L R, Wang L Y, Yu X J et al. Full-course NIR-II imaging-navigated fractionated photodynamic therapy of bladder tumours with X-ray-activated nanotransducers[J]. Nature Communications, 15, 8240(2024).

    [18] Shang W T, Peng L, He K S et al. A clinical study of a CD44v6-targeted fluorescent agent for the detection of non-muscle invasive bladder cancer[J]. European Journal of Nuclear Medicine and Molecular Imaging, 49, 3033-3045(2022).

    [19] Wang Z Q, Zhao C H, Li Y W et al. Photostable cascade-activatable peptide self-assembly on a cancer cell membrane for high-performance identification of human bladder cancer[J]. Advanced Materials, 35, 2210732(2023).

    [20] Chen F M, Zang Z S, Chen Z et al. Nanophotosensitizer-engineered Salmonella bacteria with hypoxia targeting and photothermal-assisted mutual bioaccumulation for solid tumor therapy[J]. Biomaterials, 214, 119226(2019).

    [21] Reisz P, Tracey A, Kuo F S et al. Single cell RNA sequencing of upper tract urothelial carcinoma to reveal significant heterogeneity of the tumor and immune microenvironment[J]. Journal of Clinical Oncology, 39, 484(2021).

    [22] Guo P, Qi A, Shang W et al. Targeting tumour surface collage with hydrogel probe: a new strategy to enhance intraoperative imaging sensitivity and stability of bladder cancer[J]. European Journal of Nuclear Medicine and Molecular Imaging, 51, 4165-4176(2024).

    [23] Guo P Y, Wang L, Shang W T et al. Intravesical In situ immunostimulatory gel for triple therapy of bladder cancer[J]. ACS Applied Materials & Interfaces, 12, 54367-54377(2020).

    [24] Hou D Y, Zhang N Y, Zhang P et al. In vivo self-assembled bispecific fluorescence probe for early detection of bladder cancer and metastasis[J]. Science Bulletin, 70, 407-418(2025).

    [25] He X Y, Xu Y H, Shi W et al. Ultrasensitive detection of aminopeptidase N activity in urine and cells with a ratiometric fluorescence probe[J]. Analytical Chemistry, 89, 3217-3221(2017).

    [26] Wang X Q, Liu Y, Liu W et al. Ubenimex, an APN inhibitor, could serve as an anti-tumor drug in RT112 and 5637 cells by operating in an Akt-associated manner[J]. Molecular Medicine Reports, 17, 4531-4539(2018).

    [27] Schreiber C L, Smith B D. Molecular imaging of aminopeptidase N in cancer and angiogenesis[J]. Contrast Media & Molecular Imaging, 2018, 5315172(2018).

    [28] Huang J G, Jiang Y Y, Li J C et al. A renal-clearable macromolecular reporter for near-infrared fluorescence imaging of bladder cancer[J]. Angewandte Chemie International Edition, 59, 4415-4420(2020).

    [29] Golijanin J, Amin A L, Moshnikova A et al. Targeted imaging of urothelium carcinoma in human bladders by an ICG pHLIP peptide ex vivo[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 11829-11834(2016).

    [30] Brito J, Golijanin B, Kott O et al. Ex-vivo imaging of upper tract urothelial carcinoma using novel pH low insertion peptide (variant 3), a molecular imaging probe[J]. Urology, 139, 134-140(2020).

    [31] Zhang W Y, Cai K, Sun Z D et al. Elevating second near-infrared photothermal conversion efficiency of hollow gold nanorod for a precise theranostic of orthotopic bladder cancer[J]. ACS Nano, 17, 18932-18941(2023).

    [32] Izci M, Maksoudian C, Manshian B B et al. The use of alternative strategies for enhanced nanoparticle delivery to solid tumors[J]. Chemical Reviews, 121, 1746-1803(2021).

    [34] Zheng K J, Zheng L L. Research of the novel drug for photoactivated pyroptosis of bladder cancer[J]. Optical Instruments, 46, 15-22(2024).

    [35] Ding K K, Wang L R, Zhu J M et al. Photo-enhanced chemotherapy performance in bladder cancer treatment via albumin coated AIE aggregates[J]. ACS Nano, 16, 7535-7546(2022).

    [36] You C F, Zhu Y Q, Zhu J et al. Strength in numbers: a giant NIR-II AIEgen with one-for-all phototheranostic features for exceptional orthotopic bladder cancer treatment[J]. Angewandte Chemie International Edition, 64, e202417865(2025).

    [37] Huang J G, Pu K Y. Near-infrared fluorescent molecular probes for imaging and diagnosis of nephro-urological diseases[J]. Chemical Science, 12, 3379-3392(2021).

    [38] Yao C Z, Chen Y, Zhao M Y et al. A bright, renal-clearable NIR-II brush macromolecular probe with long blood circulation time for kidney disease bioimaging[J]. Angewandte Chemie International Edition, 61, e202114273(2022).

    [39] Zhou Q, Shao S Q, Wang J Q et al. Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy[J]. Nature Nanotechnology, 14, 799-809(2019).

    [40] Sindhwani S, Syed A M, Ngai J et al. The entry of nanoparticles into solid tumours[J]. Nature Materials, 19, 566-575(2020).

    [41] Parkkila S, Rajaniemi H, Parkkila A K et al. Carbonic anhydrase inhibitor suppresses invasion of renal cancer cellsinvitro[J]. Proceedings of the National Academy of Sciences of the United States of America, 97, 2220-2224(2000).

    [42] Muselaers C H J, Stillebroer A B, Rijpkema M et al. Optical imaging of renal cell carcinoma with anti-carbonic anhydrase IX monoclonal antibody girentuximab[J]. Journal of Nuclear Medicine, 55, 1035-1040(2014).

    [43] Hekman M C H, Boerman O C, de Weijert M et al. Targeted dual-modality imaging in renal cell carcinoma: an Ex vivo kidney perfusion study[J]. Clinical Cancer Research, 22, 4634-4642(2016).

    [44] Hekman M C, Rijpkema M, Muselaers C H et al. Tumor-targeted dual-modality imaging to improve intraoperative visualization of clear cell renal cell carcinoma: a first in man study[J]. Theranostics, 8, 2161-2170(2018).

    [45] Alsaab H O, Sau S, Alzhrani R M et al. Tumor hypoxia directed multimodal nanotherapy for overcoming drug resistance in renal cell carcinoma and reprogramming macrophages[J]. Biomaterials, 183, 280-294(2018).

    [46] An H W, Hou D Y, Zheng R et al. A near-infrared peptide probe with tumor-specific excretion-retarded effect for image-guided surgery of renal cell carcinoma[J]. ACS Nano, 14, 927-936(2020).

    [47] Turkbey B, Lindenberg M L, Adler S et al. PET/CT imaging of renal cell carcinoma with 18F-VM4-037: a phase II pilot study[J]. Abdominal Radiology, 41, 109-118(2016).

    [48] Du B J, Chong Y, Jiang X Y et al. Hyperfluorescence imaging of kidney cancer enabled by renal secretion pathway dependent efflux transport[J]. Angewandte Chemie International Edition, 60, 351-359(2021).

    [49] Li K Y, Wang Q, Tang X Y et al. Advances in prostate cancer biomarkers and probes[J]. Cyborg and Bionic Systems, 5, 0129(2024).

    [50] O’Keefe D S, Bacich D J, Huang S S et al. A perspective on the evolving story of PSMA biology, PSMA-based imaging, and endoradiotherapeutic strategies[J]. Journal of Nuclear Medicine, 59, 1007-1013(2018).

    [51] Derks Y H W, Rijpkema M, Amatdjais-Groenen H I V et al. Photosensitizer-based multimodal PSMA-targeting ligands for intraoperative detection of prostate cancer[J]. Theranostics, 11, 1527-1541(2021).

    [52] Lawhn-Heath C, Salavati A, Behr S C et al. Prostate-specific membrane antigen PET in prostate cancer[J]. Radiology, 299, 248-260(2021).

    [53] Derks Y H W, Löwik D W P M, Michiel Sedelaar J P et al. PSMA-targeting agents for radio- and fluorescence-guided prostate cancer surgery[J]. Theranostics, 9, 6824-6839(2019).

    [54] Hensbergen A W, van Willigen D M, van Beurden F et al. Image-guided surgery: are we getting the most out of small-molecule prostate-specific-membrane-antigen-targeted tracers?[J]. Bioconjugate Chemistry, 31, 375-395(2020).

    [55] Wang H, He Z X, Liu X A et al. Advances in prostate-specific membrane antigen (PSMA)-targeted phototheranostics of prostate cancer[J]. Small Structures, 3, 2200036(2022).

    [56] Kawatani M, Yamamoto K, Yamada D et al. Fluorescence detection of prostate cancer by an activatable fluorescence probe for PSMA carboxypeptidase activity[J]. Journal of the American Chemical Society, 141, 10409-10416(2019).

    [57] Li S H, Li Q, Chen W et al. A renal-clearable activatable molecular probe for fluoro-photacoustic and radioactive imaging of cancer biomarkers[J]. Small, 18, 2201334(2022).

    [58] Zhang J M, Rakhimbekova A, Duan X J et al. A prostate-specific membrane antigen activated molecular rotor for real-time fluorescence imaging[J]. Nature Communications, 12, 5460(2021).

    [59] Glumac P M, Gallant J P, Shapovalova M et al. Exploitation of CD133 for the targeted imaging of lethal prostate cancer[J]. Clinical Cancer Research, 26, 1054-1064(2020).

    [60] Hu H, Zhang Y F, Shukla S et al. Dysprosium-modified tobacco mosaic virus nanoparticles for ultra-high-field magnetic resonance and near-infrared fluorescence imaging of prostate cancer[J]. ACS Nano, 11, 9249-9258(2017).

    [61] Nguyen L N, Head L, Witiuk K et al. The risks and benefits of cavernous neurovascular bundle sparing during radical prostatectomy: a systematic review and meta-analysis[J]. Journal of Urology, 198, 760-769(2017).

    [62] Ficarra V, Novara G, Rosen R C et al. Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy[J]. European Urology, 62, 405-417(2012).

    [63] Wallis C J D, Glaser A, Hu J C et al. Survival and complications following surgery and radiation for localized prostate cancer: an international collaborative review[J]. European Urology, 73, 11-20(2018).

    [64] Walsh P C, Donker P J. Impotence following radical prostatectomy: insight into etiology and prevention[J]. Journal of Urology, 197, S165-S170(2017).

    [65] Li R J, Liu Z G, Pan Y M et al. Peripheral nerve injuries treatment: a systematic review[J]. Cell Biochemistry and Biophysics, 68, 449-454(2014).

    [66] Wang L G, Montaño A R, Masillati A M et al. Nerve visualization using phenoxazine-based near-infrared fluorophores to guide prostatectomy[J]. Advanced Materials, 36, 2304724(2024).

    [67] Li D, Yang M L, Liang M Z et al. C-Met-targeted near-infrared fluorescent probe for real-time depiction and dissection of perineural invasion and lymph node metastasis lesions in pancreatic ductal adenocarcinoma xenograft models[J]. Biomaterials Science, 9, 6737-6752(2021).

    [68] Lu W L, Kuang H F, Gu J Y et al. GAP-43 targeted indocyanine green-loaded near-infrared fluorescent probe for real-time mapping of perineural invasion lesions in pancreatic cancer in vivo[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 50, 102671(2023).

    Tools

    Get Citation

    Copy Citation Text

    Zixing Wang, Pengyu Guo, Wanhai Xu. Research Progress of Fluorescent Molecular Imaging Probes in Urinary System Tumors (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(18): 1817013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Medical Optics and Biotechnology

    Received: May. 10, 2025

    Accepted: Jun. 13, 2025

    Published Online: Sep. 12, 2025

    The Author Email: Pengyu Guo (guopengyu@hrbmu.edu.cn), Wanhai Xu (xuwanhai@163.com)

    DOI:10.3788/LOP251193

    CSTR:32186.14.LOP251193

    Topics