Optics and Precision Engineering, Volume. 27, Issue 9, 1909(2019)

Review of ultra-precision optical interferential grating encoder displacement measurement technology for immersion lithography scanner

WANG Lei-jie*... ZHANG Ming, ZHU Yu, YE Wei-nan and YANG Fu-zhong |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(44)

    [1] [1] DE JONG F, PASC B, CASTENMILLER T, et al.. Enabling the lithography roadmap: an immersion tool based on a novel stage positioning system[J]. SPIE, 2009, 7274: 72741S.

    [2] [2] CASTENMILLER T, MAST F, KORT T, et al.. Towards ultimate optical lithography with NXT: 1950i dual stage immersion platform [J]. SPIE, 2010, 7640: 76401N.

    [3] [3] SHIBAZAKI Y, KOHNO H, HAMATANI M, et al.. An innovative platform for high-throughput, high-accuracy lithography using a single wafer stage [J]. SPIE, 2009, 7274: 72741l.

    [4] [4] WANG L J, ZHANG M, ZHU Y, et al.. A novel heterodyne planar grating encoder system for in-plane and out-of-plane displacement measurement with nanometer-resolution [C]// Proceedings of the 29th annual meeting of the American Society for Precision Engineering, Boston, USA: ASPE, 2014: 173-177.

    [5] [5] KONKOLA T P. Design and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions [D]. Cambridge: Massachusetts Institute of Technology, 2003.

    [6] [6] WANG L J, ZHANG M, ZHU Y, et al.. Progress on scanning beam interference lithography tool with high environmental robustness for patterning large size grating with nanometre accuracy [C]// Proceedings of the 17th annual meeting of the European Society for Precision Engineering and Nanotechnology, Hannover, Germany: EUSPEN, 2017: 173-177.

    [8] [8] JI G F, HU J C, ZHU Y, et al.. A grating interferometer-based six-degree-of-freedom measurement method for ultra-precision motion stages [C]// Proceedings of the 29th annual meeting of the American Society for Precision Engineering, Boston, USA: ASPE, 2014: 445-450.

    [9] [9] LEE C K, WU C C, CHEN S J, et al.. Design and construction of linear laser encoders that possess high tolerance of mechanical runout [J]. Applied Optics, 2004, 43(31): 5754-5762.

    [10] [10] LEE J Y, CHEN H Y, HSU C C, et al.. Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution[J]. Sensors and Actuators A: Physical, 2007, 137(1): 185-191.

    [11] [11] WU C C, HSU C C, LEE J Y, et al.. Optical heterodyne laser encoder with sub-nanometer resolution [J]. Measurement Science and Technology, 2008, 19: 045305.

    [12] [12] HOLZAPFEL W. Advancements in displacement metrology based on encoder system [C]. Proceedings of the 23th annual meeting of the American Society for Precision Engineering, Portland, USA: ASPE, 2008: 71-74.

    [13] [13] KAO C F, LU S H, SHEN H M, et al.. Diffractive laser encoder with a grating in Littrow configuration[J]. Japanese Journal of Applied Physics, 2008, 47(3): 1833-1837.

    [14] [14] GUAN J, KCHERT P, WEICHERT C, et al.. A high performance one-dimensional homodyne encoder and the proof of principle of a novel two-dimensional homodyne encoder[J]. Precision Engineering, 2013, 37(4): 865-870.

    [15] [15] CHENG F, FAN K C. Linear diffraction grating interferometer with high alignment tolerance and high accuracy [J]. Applied Optics, 2012, 50 (22): 4550-4556.

    [16] [16] WU C C, CHENG C, YANG Z. Optical homodyne common-path grating interferometer with subnanometer displacement resolution [J]. SPIE, 2010, 7791: 779105.

    [17] [17] HSIEH H L, LEE J Y, WU W T, et al.. Quasi-common-optical-path heterodyne grating interferometer for displacement measurement[J]. Measurement Science and Technology, 2010, 21(11): 115304.

    [18] [18] CHENG F. Study on the key technology of nano-CMM measurement and control system[D]. Hefei: Hefei University of Technology, 2010.(in Chinese)

    [19] [19] SHANG P. Study on the key technology of high-resolution diffraction grating interferometric transducer of linear displacements[D]. Hefei: Hefei University of Technology, 2012.(in Chinese)

    [21] [21] KAO C F, LU S H, LU M H, et al.. High resolution planar encoder by retro-reflection [J]. Review of Scientific Instruments, 2005, 76: 085110.

    [22] [22] KAO C F, Chang C C, LU M H. Double-diffraction planar encoder by conjugate optics [J]. Optical Engineering, 2005, 44(2): 023603.

    [23] [23] HSU C C, WU C C, LEE J Y, et al.. Reflection type heterodyne grating interferometry for in-plane displacement measurement[J]. Optics Communications, 2008, 281(9): 2582-2589.

    [24] [24] FENG C, ZENG L J and WANG S W. Heterodyne planar grating encoder with high alignment tolerance, especially insensitivity to grating tilts [J]. SPIE, 2013, 8759: 87593L.

    [25] [25] XIA H J, FEI Y T and ZHANG M. Error Analysis of 2-D diffraction grating interferometer for high resolution displacement measurement [J]. SPIE, 2008: 7130: 713052.

    [26] [26] LIN C B, YAN S H, DU Z G, et al.. High-efficiency gold-coated cross-grating for heterodyne grating interferometer with improved signal contrast and optical subdivision[J]. Optics Communications, 2015, 339: 86-93.

    [27] [27] KIMURA A, WEI G, ARAI Y, et al.. Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness[J]. Precision Engineering, 2010, 34(1): 145-155.

    [28] [28] TRUTNA W, OWEN G, RAY A, et al.. Littrow interferometer: US, US7440113B2 [P].[2008-10-21].

    [29] [29] DE GROOT P, BADAMI V, LIESENER J. Concepts and geometries for the next generation of precision heterodyne optical encoders [C]. Proceedings of the 31th annual meeting of the American Society for Precision Engineering, Charlotte, USA: ASPE, 2016: 4660.

    [30] [30] DECK L, DE GROOT P, SCHROEDER M. Interferometric encoder system: US, US2011/0255096A2[P]. [2011-0-20].

    [31] [31] LIESENER J. Interferometric encoder system: US, US2016/0102999A1[P]. [2016-4-11].

    [32] [32] KIMURA A, GAO W, KIM W, et al.. A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement[J]. Precision Engineering, 2012, 36(4): 576-585.

    [33] [33] SAITO Y, ARAI Y, GAO W. Detection of three-axis angles by an optical sensor[J]. Sensors and Actuators A: Physical, 2009, 150(2): 175-183.

    [34] [34] LI X H, GAO W, MUTO H, et al.. A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage[J]. Precision Engineering, 2013, 37(3): 771-781.

    [35] [35] ELLIS J D. Front matter[M]//Field Guide to Displacement Measuring Interferometry, SPIE, DOI: 10.1117/3.1002328.fm

    [36] [36] DEMAREST F C. High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics[J]. Measurement Science and Technology, 1998, 9(7): 1024-1030.

    [37] [37] HEYDEMAN P. Determination and correction of quadrature fringe measurement errors in interferometers [J]. Applied Optics, 1981, 20 (19): 3382-3384.

    [38] [38] DENG Y L, LI X J, GENG Y F, et al.. Influence of nonpolarizing beam splitters on nonlinear error in heterodyne interferometers[J]. Acta Optica Sinica, 2012, 32(11): 146-151.(in Chinese)

    [39] [39] SCHMITZ T L, BECKWITH J F. An investigation of two unexplored periodic error sources in differential-path interferometry[J]. Precision Engineering, 2003, 27(3): 311-322.

    [40] [40] BADAMI V G, PATTERSON S R. A frequency domain method for the measurement of nonlinearity in heterodyne interferometry[J]. Precision Engineering, 2000, 24(1): 41-49.

    [41] [41] HOU W M. Optical parts and the nonlinearity in heterodyne interferometers[J]. Precision Engineering, 2006, 30(3): 337-346.

    [42] [42] DE GROOT P. Jones matrix analysis of high-precision displacement measuring interferometers [C]. Proceedings of the 2nd topical meeting on optoelectronic distance measurement and applications, Pavia, Italy: ODIMA, 1999: 9-14.

    [43] [43] BIRCH K, DOWNS M. Correction to the updated Edlen equation for the refractive index of air [J]. Metrologia, 1994, 31: 315-316.

    [44] [44] HOMLMES M, EVANS C. Displacement measuring interferometry measurement uncertainty [C]. Proceedings of the topical summer meeting of the American Society for Precision Engineering, Pennsylvania, USA: ASPE, 2004: 4660.

    Tools

    Get Citation

    Copy Citation Text

    WANG Lei-jie, ZHANG Ming, ZHU Yu, YE Wei-nan, YANG Fu-zhong. Review of ultra-precision optical interferential grating encoder displacement measurement technology for immersion lithography scanner[J]. Optics and Precision Engineering, 2019, 27(9): 1909

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: May. 22, 2019

    Accepted: --

    Published Online: Oct. 14, 2019

    The Author Email: Lei-jie WANG (wang-lj66@mail.tsinghua.edu.cn)

    DOI:10.3788/ope.20192709.1909

    Topics