Optics and Precision Engineering, Volume. 30, Issue 20, 2510(2022)
Adaptive denoising method of steel plate surface image based on BM3D
[1] B XUE, Z S WU. Key technologies of steel plate surface defect detection system based on artificial intelligence machine vision. Wireless Communications and Mobile Computing, 2021, 5553470(2021).
[2] Y YANG, D R LI, X F HUANG. Research on image denoising algorithm based on non-local block matching. International Journal of Information and Communication Technology, 16, 245(2020).
[3] B SEKHAR, P P REDDY, S VENKATARAMANA et al. Image denoising using novel social grouping optimization algorithm with transform domain technique. International Journal of Natural Computing Research, 8, 28-40(2019).
[4] A BUADES, B COLL, J M MOREL. A non-local algorithm for image denoising, 60-65(2015).
[5] I V HERNÁNDEZ-GUTIÉRREZ, F J GALLEGOS-FUNES, A J ROSALES-SILVA. Improved preclassification non local-means (IPNLM) for filtering of grayscale images degraded with additive white Gaussian noise. EURASIP Journal on Image and Video Processing, 1-14(2018).
[6] [6] 6陆海青, 葛洪伟. 混合鲁棒权重和改进方法噪声的两级非局部均值去噪[J]. 计算机工程与科学, 2018, 40(7): 1227-1236. doi: 10.3969/j.issn.1007-130X.2018.07.012LUH Q, GEH W. Two-stage non-local means denoising based on hybrid robust weight and improved method noise[J]. Computer Engineering & Science, 2018, 40(7): 1227-1236.(in Chinese). doi: 10.3969/j.issn.1007-130X.2018.07.012
[7] F C HUO, W H ZHANG, Q WANG et al. Two-stage image denoising algorithm based on noise localization. Multimedia Tools and Applications, 80, 14101-14122(2021).
[8] X HUANG, G A WOOLSEY. Image denoising using Wiener filtering and wavelet thresholding, 1759-1762(2000).
[9] H ZHU, X M WANG. Image denoising by wavelet transform based on new threshold, 208-213(2021).
[10] S G MALLAT, Z F ZHANG. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41, 3397-3415(1993).
[11] S K SAHOO, A MAKUR. Signal recovery from random measurements via extended orthogonal matching pursuit. IEEE Transactions on Signal Processing, 63, 2572-2581(2015).
[12] M AHARON, M ELAD, A BRUCKSTEIN. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54, 4311-4322(2006).
[13] K DABOV, V KATKOVNIK et al. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 16, 2080-2095(2007).
[14] [14] 14王燕, 李晓燕, 母秀清, 等. 一种基于BM3D的接触网图像自适应去噪新方法[J]. 铁道学报, 2016, 38(4): 59-65. doi: 10.3969/j.issn.1001-8360.2016.04.009WANGY, LIX Y, MUX Q, et al. A new adaptive denoising method based on BM3D for catenary image[J]. Journal of the China Railway Society, 2016, 38(4): 59-65.(in Chinese). doi: 10.3969/j.issn.1001-8360.2016.04.009
[15] [15] 15冯象初, 李晓晖, 王卫卫, 等. 方向扩散方程修正BM3D图像去噪改进算法[J]. 西安电子科技大学学报, 2017, 44(5): 102-108. doi: 10.3969/j.issn.1001-2400.2017.05.018FENGX C, LIX H, WANGW W, et al. Modified BM3Dalgorithm for image denoising using the directed diffusion equation[J]. Journal of Xidian University, 2017, 44(5): 102-108.(in Chinese). doi: 10.3969/j.issn.1001-2400.2017.05.018
[16] L DAI, Y S ZHANG, Y J LI. BM3D image denoising algorithm with adaptive distance hard-threshold. International Journal of Signal Processing, Image Processing and Pattern Recognition, 6, 41-50(2013).
[17] W M CHENG, X ZHU, X CHEN et al. Manhattan distance-based adaptive 3D transform-domain collaborative filtering for laser speckle imaging of blood flow. IEEE Transactions on Medical Imaging, 38, 1726-1735(2019).
[18] Q P FENG, S P TAO, C XU et al. BM3D-GT&AD: an improved BM3D denoising algorithm based on Gaussian threshold and angular distance. IET Image Processing, 14, 431-441(2020).
[19] A A YAHYA, J Q TAN, B Y SU et al. BM3D image denoising algorithm based on an adaptive filtering. Multimedia Tools and Applications, 79, 20391-20427(2020).
[20] A ABUBAKAR, X J ZHAO, S T LI et al. A block-matching and 3-D filtering algorithm for Gaussian noise in DoFP polarization images. IEEE Sensors Journal, 18, 7429-7435(2018).
[21] W LIU, W S LIN. Additive white Gaussian noise level estimation in SVD domain for images. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 22, 872-883(2013).
Get Citation
Copy Citation Text
Yi YANG, Yibo LI, Zhuxi MA, Fengyu CHEN, Qianbin HUANG. Adaptive denoising method of steel plate surface image based on BM3D[J]. Optics and Precision Engineering, 2022, 30(20): 2510
Category: Information Sciences
Received: Feb. 21, 2022
Accepted: --
Published Online: Oct. 27, 2022
The Author Email: LI Yibo (yibo.li@csu.edu.cn)