Optics and Precision Engineering, Volume. 30, Issue 20, 2510(2022)

Adaptive denoising method of steel plate surface image based on BM3D

Yi YANG... Yibo LI*, Zhuxi MA, Fengyu CHEN and Qianbin HUANG |Show fewer author(s)
Author Affiliations
  • Light Alloy Research Institute of Central South University, Changsha410083, China
  • show less
    Figures & Tables(17)
    Flow chart of BM3D algorithm
    Fitting function graph of basic estimate threshold
    Fitting function graph of final estimate threshold
    Flow chart of TFBM3D algorithm denoising
    Three testing images
    PSNR and SSIM curves of each algorithm on the scratch image
    PSNR and SSIM curves of each algorithm on the inclusion image
    PSNR and SSIM curves of each algorithm on the pitted-surface image
    Denosing performance of different algorithms on the scratch image while σ=10
    Denosing performance of different algorithms on the inclusion image while σ=30
    Denosing performance of different algorithms on the pitted-surface image while σ=25
    Residual images of different denosing algorithms on the pitted-surface image while σ=25
    Image defect segmentation effect of different denosing algorithms on the scratch image while σ=10
    • Table 1. 为10时新算法参数设置

      View table
      View in Article

      Table 1. 为10时新算法参数设置

      参数基础估计数值最终估计数值
      预滤波收缩系数λ2D0.2\
      硬阈值收缩系数λ3D3.2\
      图像块尺寸N1616
      参考块移动步长33
      搜索块步长11
      距离阈值τ(1τ2)365.57211.85
      最大相似块数1616
      搜索窗尺寸W1(W2)3939
      凯撒值β2.02.0
    • Table 2. PSNR and SSIM indexes of different denoising algorithms on the scratch image

      View table
      View in Article

      Table 2. PSNR and SSIM indexes of different denoising algorithms on the scratch image

      AlgorithmPSNR/dBSSIM
      10152025301015202530
      GF35.4832.5730.2428.3426.910.820.710.600.500.41
      TSNLM36.5234.1131.6729.8628.430.890.830.740.640.56
      TSF35.7034.2432.4430.8629.390.880.830.750.670.59
      CTWT36.6136.0134.9133.7528.340.890.880.870.840.57
      IPNLM37.7136.5435.1633.5432.100.900.890.850.820.71
      BM3D37.8336.8535.9734.8834.680.900.890.880.860.84
      ABM3D37.3035.4933.6032.2430.840.900.890.880.860.84
      TFBM3D38.0437.5336.8336.4336.040.910.900.900.890.89
    • Table 3. PSNR and SSIM indexes of different denoising algorithms on the inclusion image

      View table
      View in Article

      Table 3. PSNR and SSIM indexes of different denoising algorithms on the inclusion image

      AlgorithmPSNR/dBSSIM
      10152025301015202530
      GF35.8332.7330.2528.4527.000.840.730.610.510.43
      TSNLM36.7734.3231.8430.1728.590.900.840.730.650.58
      TSF35.8434.2332.4230.7829.380.870.810.740.660.59
      CTWT36.3135.8934.9132.5628.420.890.880.870.780.55
      IPNLM38.0936.8335.4034.2633.140.910.900.860.820.78
      BM3D38.2037.0335.9134.3033.130.910.900.880.870.84
      ABM3D37.5635.4633.7232.2731.140.900.850.800.740.70
      TFBM3D38.5137.6936.8336.3335.810.920.910.900.900.89
    • Table 4. PSNR and SSIM indexes of different denoising algorithms on the pitted-surface image

      View table
      View in Article

      Table 4. PSNR and SSIM indexes of different denoising algorithms on the pitted-surface image

      AlgorithmPSNR/dBSSIM
      10152025301015202530
      GF35.8932.5830.3228.4227.040.860.750.650.590.47
      TSNLM36.7533.9431.9530.0428.610.910.850.780.690.62
      TSF34.5933.0431.3530.0228.550.840.800.720.650.60
      CTWT36.0334.1532.6731.4830.140.880.810.790.750.71
      IPNLM37.1935.5734.4533.2632.420.910.880.850.810.78
      BM3D37.3335.7434.7533.7133.000.920.900.880.850.83
      ABM3D37.3035.0333.4631.8430.650.910.870.820.760.70
      TFBM3D37.6536.1535.2234.2533.580.920.900.880.870.85
    Tools

    Get Citation

    Copy Citation Text

    Yi YANG, Yibo LI, Zhuxi MA, Fengyu CHEN, Qianbin HUANG. Adaptive denoising method of steel plate surface image based on BM3D[J]. Optics and Precision Engineering, 2022, 30(20): 2510

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: Feb. 21, 2022

    Accepted: --

    Published Online: Oct. 27, 2022

    The Author Email: LI Yibo (yibo.li@csu.edu.cn)

    DOI:10.37188/OPE.20223020.2510

    Topics