Laser & Optoelectronics Progress, Volume. 60, Issue 13, 1316017(2023)

Structure and Properties of Nano-Silicon Doped Bi3.79Er0.03Yb0.18Ti2.97W0.03O12∶xSi Upconversion Phosphor

Jinlei Zhou, Xihu Lei, Benshan Zou, Yingqiang Shen, and Feng Gao*
Author Affiliations
  • Guangxi Key Laboratory of Nonferrous Metals and Characteristic Materials Processing, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China
  • show less
    References(30)

    [1] Badge S K, Deshpande A V. Study of dielectric and ferroelectric properties of bismuth titanate (Bi4Ti3O12) ceramic prepared by sol-gel synthesis and solid state reaction method with varying sintering temperature[J]. Solid State Ionics, 334, 21-28(2019).

    [2] Xie X C, Wang T Z, Zhou Z Y et al. Enhanced piezoelectric properties and temperature stability of Bi4Ti3O12-based Aurivillius ceramics via W/Nb substitution[J]. Journal of the European Ceramic Society, 39, 957-962(2019).

    [3] Liu Y, Wang S F, Chen Z J et al. Applications of ferroelectrics in photovoltaic devices[J]. Science China Materials, 59, 851-866(2016).

    [4] Li N X, Kong Y, Shen Q H et al. Enhanced photocatalytic performance of direct Z-scheme Bi4Ti3O12/SrTiO3 photocatalysts for CO2 reduction to solar fuel[J]. Journal of Photonics for Energy, 11, 026501(2021).

    [5] Chen H B, Shen B, Xu J B et al. The grain size-dependent electrical properties of Bi4Ti3O12 piezoelectric ceramics[J]. Journal of Alloys and Compounds, 551, 92-97(2013).

    [6] Kao M C, Chen H Z, Young S L et al. Effects of tantalum doping on microstructure and ferroelectric properties of Bi4Ti3O12 thin films prepared by a sol-gel method[J]. Journal of Crystal Growth, 338, 139-142(2012).

    [7] Subohi O, Kumar G S, Malik M M et al. Dielectric properties of bismuth titanate (Bi4Ti3O12) synthesized using solution combustion route[J]. Physica B: Condensed Matter, 407, 3813-3817(2012).

    [8] Sui H T, Yang D M, Jiang H et al. Preparation and electrical properties of Sm-doped Bi2Ti2O7 thin films prepared on Pt (111) substrates[J]. Ceramics International, 39, 1125-1128(2013).

    [9] Wang J J, Feng L J, Chao X L et al. Enhanced electrical properties of lead-free Bi4-xSbxTi3O12 ceramics with high Tc[J]. Current Applied Physics, 13, 1713-1717(2013).

    [10] Cui Z M, Yang H, Zhao X X. Enhanced photocatalytic performance of g-C3N4/Bi4Ti3O12 heterojunction nanocomposites[J]. Materials Science and Engineering: B, 229, 160-172(2018).

    [11] Huang Y Q, Bai G X, Zhao Y J et al. Yb/Ho codoped layered perovskite bismuth titanate microcrystals with upconversion luminescence: fabrication, characterization, and application in optical fiber ratiometric thermometry[J]. Inorganic Chemistry, 59, 14229-14235(2020).

    [12] Zhao Y W, Fan H Q, Fu K et al. Intrinsic electric field assisted polymeric graphitic carbon nitride coupled with Bi4Ti3O12/Bi2Ti2O7 heterostructure nanofibers toward enhanced photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 41, 16913-16926(2016).

    [13] Gao F, Liu H F, Ren F et al. Tunable structure and intensive upconversion photoluminescence for Ho3+-Yb3+ codoped bismuth titanate composite synthesized by sol-gel-combustion (SGC) method[J]. Ceramics International, 46, 3015-3022(2020).

    [14] Gao F, Zhang Q Y, Ding G J et al. Strong upconversion photoluminescence and large ferroelectric polarization in Er3+-Yb3+-W6+ triply substituted bismuth titanate thin films prepared by chemical solution deposition[J]. Journal of the American Ceramic Society, 94, 3867-3870(2011).

    [15] Gao F, Ding G J, Zhou H et al. Bright up-conversion photoluminescence of Bi4-xErxTi3O12 ferroelectric thin films[J]. Journal of Applied Physics, 109, 043106(2011).

    [16] Bokolia R, Mondal M, Rai V K et al. Enhanced infrared-to-visible up-conversion emission and temperature sensitivity in (Er3+, Yb3+, and W6+) tri-doped Bi4Ti3O12 ferroelectric oxide[J]. Journal of Applied Physics, 121, 084101(2017).

    [17] You Q, Chen D G, Xiao X et al. 10 Gb/s free space optical interconnect with broadcasting capability enabled by a silicon integrated optical phased array[J]. Chinese Optics Letters, 19, 120602(2021).

    [18] Liu Y Q, Li Y J, Wu Y L et al. High-efficiency silicon heterojunction solar cells: materials, devices and applications[J]. Materials Science and Engineering: R: Reports, 142, 100579(2020).

    [19] Li Y Y, Zeng H L, Pu H Z et al. Photocatalytic degradation of tetracycline by Si doped Li2SnO3[J]. Chinese Journal of Materials Research, 36, 206-212(2022).

    [20] Inokuma T, Wakayama Y, Muramoto T et al. Optical properties of Si clusters and Si nanocrystallites in high-temperature annealed SiOx films[J]. Journal of Applied Physics, 83, 2228-2234(1998).

    [21] Cullis A G, Canham L T. Visible light emission due to quantum size effects in highly porous crystalline silicon[J]. Nature, 353, 335-338(1991).

    [22] Bsiesy A, Vial J C, Gaspard F et al. Photoluminescence of high porosity and of electrochemically oxidized porous silicon layers[J]. Surface Science, 254, 195-200(1991).

    [23] Gardelis S, Rimmer J S, Dawson P et al. Evidence for quantum confinement in the photoluminescence of porous Si and SiGe[J]. Applied Physics Letters, 59, 2118-2120(1991).

    [24] Gole J L, Dudel F P, Grantier D et al. Origin of porous silicon photoluminescence: evidence for a surface bound oxyhydride-like emitter[J]. Physical Review B, 56, 2137-2153(1997).

    [25] Prokes S M. Light emission in thermally oxidized porous silicon: evidence for oxide-related luminescence[J]. Applied Physics Letters, 62, 3244-3246(1993).

    [26] Chen R, Chen D H. Enhanced luminescence properties of CaTiO3∶ Pr3+ phosphor with addition of SiO2 by solid-state reaction[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 127, 256-260(2014).

    [27] Ren F, Zhou J L, Wang D P et al. The effects of Li+ doping on structure and upconversion luminescent properties for Bi3.46Ho0.04Yb0.5Ti3O12: xLi phosphors[J]. Crystals, 11, 1220(2021).

    [28] Guo M, He H B, Yi K et al. Optical characteristics of ultrathin amorphous Ge films[J]. Chinese Optics Letters, 18, 103101(2020).

    [29] Wang Y Z, Luo H Y, Wang B et al. Q-switched Er3+/Dy3+ codoped ZrF4 fiber laser: continuously tunable pulse generation from 3.06 to 3.62 µm[J]. Chinese Optics Letters, 21, 041402(2023).

    [30] Zhong X, Wang X W, Sun L et al. Enhancement of rapid lifetime determination for time-resolved fluorescence imaging in forensic examination[J]. Chinese Optics Letters, 19, 041101(2021).

    Tools

    Get Citation

    Copy Citation Text

    Jinlei Zhou, Xihu Lei, Benshan Zou, Yingqiang Shen, Feng Gao. Structure and Properties of Nano-Silicon Doped Bi3.79Er0.03Yb0.18Ti2.97W0.03O12∶xSi Upconversion Phosphor[J]. Laser & Optoelectronics Progress, 2023, 60(13): 1316017

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Nov. 24, 2022

    Accepted: Feb. 16, 2023

    Published Online: Jul. 14, 2023

    The Author Email: Gao Feng (gaofeng@gxu.edu.cn)

    DOI:10.3788/LOP223157

    Topics