Optics and Precision Engineering, Volume. 30, Issue 21, 2805(2022)

Pulsed laser-induced damage threshold measurement and damage performance of optical components

Bin MA... Zhiqiang HOU, Hongfei JIAO, Jinlong ZHANG, Zhengxiang SHEN, Xinbin CHENG and Zhanshan WANG* |Show fewer author(s)
Author Affiliations
  • Institute of Precision Optical Engineering, MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Shanghai Professional Technical Service Platform for Full-Spectrum and High-Performance Optical Thin Film Devices and Applications, School of Physics Science and Engineering, Tongji University, Shanghai200092, China
  • show less
    References(109)

    [1] [1] 1张小民, 魏晓峰. 中国新一代巨型高峰值功率激光装置发展回顾[J]. 中国激光, 2019, 46(1): 23-32. doi: 10.3788/cjl201946.0100003ZHANGX M, WEIX F. Review of new generation of huge-scale high peak power laser facility in China[J]. Chinese Journal of Lasers, 2019, 46(1): 23-32. (in Chinese). doi: 10.3788/cjl201946.0100003

    [2] F LIU, S Y DONG, J L ZHANG et al. Interface and material engineering for zigzag slab lasers. Scientific Reports, 7, 16699(2017).

    [3] X B CHENG, Z X SHEN, H F JIAO et al. Laser damage study of nodules in electron-beam-evaporated HfO2/SiO2 high reflectors. Applied Optics, 50, C357-C363(2011).

    [4] T H MAIMAN. Stimulated optical radiation in ruby. Nature, 187, 493-494(1960).

    [5] C R GIULIANO. Laser-induced damage to transparent dielectric materials. Applied Physics Letters, 5, 137-139(1964).

    [6] A J GLASS, A H GUENTHER. Laser induced damage of optical elements-a status report. Applied Optics, 12, 637-649(1973).

    [7] M J LUBIN, J M SOURES, L M GOLDMAN. Large-aperture Nd-glass laser amplifier for high-peak-power application. Journal of Applied Physics, 44, 347-350(1973).

    [8] A GLASS, A J M R GUENTHER. Damage in laser glass. ASTM Special Tech Pub, 9, 14(1969).

    [9] H J WEAVER, G E SOMMARGREN, E S BLISS. Self-calibration and analysis of image formation In the sub-nanosecond domain, 0048, 63-68(1975).

    [10] D MILAM. Laser-induced damage at 1064 nm, 125 psec. Applied Optics, 16, 1204-1213(1977).

    [11] W LOWDERMILK, D MILAM. Laser-induced surface and coating damage. IEEE Journal of Quantum Electronics, 17, 1888-1903(1981).

    [12] S D JACOBS, K A CERQUA, K L MARSHALL et al. Liquid-crystal laser optics: design, fabrication, and performance. Journal of the Optical Society of America B, 5, 1962-1979(1988).

    [13] P GARREC, J DIJON et al. R-on-1 automatic mapping: a new tool for laser damage testing, 2714, 90-101(1995).

    [14] K MANN, N KAISER et al. Laser conditioning of LaF3/MgF2 dielectric coatings at 248 nm. Applied Optics, 35, 5613-5619(1996).

    [15] K H GUENTHER, T W HUMPHERYS, J BALMER et al. 1.06-μm laser damage of thin film optical coatings: a round-robin experiment involving various pulse lengths and beam diameters. Applied Optics, 23, 3743-3752(1984).

    [16] Lasers and laser-related equipment - Test methods for laser-induced damage threshold - Part 2: Threshold determination: ISO 21254-2: 2011[S]. International Organization for Standardization(2011).

    [17] S C SEITEL, A GIESEN, J BECKER. International standard test method for laser-induced damage threshold of optical surfaces. CO, 1848, 2-3(1993).

    [18] Lasers and laser-related equipment-Determination of laser-induced damage threshold of optical surfaces-Part 1: 1-on-1 test: ISO 11254-1: 2000[S]. International Organization for Standardization(2000).

    [19] Lasers and laser-related equipment - Determination of laser-induced damage threshold of optical surfaces - Part 2: S-on-1 test: ISO 11254-2: 2001[S]. International Organization for Standardization(2001).

    [20] [20] 20国家技术监督局. 光学表面激光损伤阈值测试方法 第1部分: 1对1测试: GB/T 16601—1996[S]. 北京: 中国标准出版社, 1997. doi: 10.3969/j.issn.1004-0668.2003.01.024State Bureau of Quality and Technical Supervision of the People's Republic of China. Test methods for laser induced damage threshold of optical surfaces Part 1: 1 on 1 test: GB/T 16601—1996[S]. Beijing: Standards Press of China, 1997. (in Chinese). doi: 10.3969/j.issn.1004-0668.2003.01.024

    [21] [21] 21激光器和激光相关设备-激光损伤阈值测试方法-第2部分:阈值确定: GB/T 16601.2[S]. 国家质量监督检验检疫总局, 国家标准化管理委员会, 2017.Lasers and laser-related equipment-Test methods for laser-induced damage threshold-Part 2: Threshold determination: GB/T 16601.2[S]. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China, 2017. (in Chinese)

    [22] P VOLTO, A ROUSSEL, C CORDILLOT et al. Refined statistical measurements of laser damage, 3902, 332-338(1999).

    [23] D Y H WANG, R E ENGLISH, D M AIKENS. Implementation of ISO 10110 optics drawing standards for the National Ignition Facility. Denver, 3782, 502-508(1999).

    [24] J WOLFE. Small optics laser damage test procedure. Technical Report(2017).

    [25] R CHOW, M RUNKEL, J R TAYLOR. Laser damage testing of small optics for the National Ignition Facility. Applied Optics, 44, 3527-3531(2005).

    [26] M BORDEN, J FOLTA, C STOLZ et al. Improved method for laser damage testing coated optics, 5991, 694-703(2005).

    [27] D C NESS, A D STREATER. Automated system for laser damage testing of coated optics, 5991, 2006(2005).

    [28] J HOOSE. The Omega Fusion Laser System, 103, 22-28(1977).

    [29] D N MAYWAR, J H KELLY, L J WAXER et al. OMEGA EP high-energy petawatt laser: progress and prospects. Journal of Physics: Conference Series, 112(2008).

    [30] M D PERRY, D PENNINGTON, B C STUART et al. Petawatt laser pulses. Optics Letters, 24, 160-162(1999).

    [31] E I MOSES. Ignition on the national ignition facility. Journal of Physics: Conference Series, 112(2008).

    [32] W P LEEMANS, J DANIELS, A DESHMUKH et al. BELLA laser and operations. Proceedings of PAC2013, 1097-1100(2013).

    [33] J EBRARDT, J M CHAPUT. LMJ on its way to fusion. Journal of Physics: Conference Series, 244(2010).

    [34] C N DANSON, P A BRUMMITT, R J CLARKE et al. Vulcan petawatt - An ultra-high-intensity interaction facility. Nuclear Fusion, 44(2004).

    [35] V BAGNOUD, B AURAND, A BLAZEVIC et al. Commissioning and early experiments of the PHELIX facility. Applied Physics B, 100, 137-150(2010).

    [36] V V LOZHKAREV, G I FREIDMAN, V N GINZBURG et al. 200 TW 45 fs laser based on optical parametric chirped pulse amplification. Optics Express, 14, 446-454(2006).

    [37] J Q ZHU, J ZHU, X C LI et al. Status and development of high-power laser facilities at the NLHPLP. High Power Laser Science and Engineering, 6, 21-43(2018).

    [38] W G ZHENG, X F WEI, Q H ZHU et al. Laser performance of the SG-III laser facility. High Power Laser Science and Engineering, 4(2016).

    [39] J E WOLFE, S E SCHRAUTH. Automated laser-damage test system with real-time damage event imaging and detection, 6403, 688-696(6403).

    [40] A A KOZLOV, S PAPERNOV, J B OLIVER et al. Study of the picosecond laser damage in HfO2/SiO20based thin-film coatings in vacuum, 10014, 204-210(10014).

    [41] Y J XU, L A EMMERT, W RUDOLPH. Spatio-TEmporally REsolved Optical Laser Induced Damage (STEREO LID) technique for material characterization. Optics Express, 23, 21607-21614(2015).

    [42] D RISTAU, M JUPÉ, K STARKE. Laser damage thresholds of optical coatings. Thin Solid Films, 518, 1607-1613(2009).

    [43] L GALLAIS, J Y NATOLI, C AMRA. Statistical study of single and multiple pulse laser-induced damage in glasses. Optics Express, 10, 1465-1474(2002).

    [44] G BATAVIČIŪTĖ, M ŠČIUKA, A MELNINKAITIS. Direct comparison of defect ensembles extracted from damage probability and raster scan measurements. Journal of Applied Physics, 118, 105306(2015).

    [45] L LAMAIGNèRE, A OLLé, M CHOREL et al. Round-robin measurements of the laser-induced damage threshold with sub-picosecond pulses on optical single layers. Optical Engineering, 60(2020).

    [46] S SCHRAMEYER, M JUPé, L JENSEN et al. Algorithm for cumulative damage probability calculations in S-on-1 laser damage testing, 8885, 195-201(8885).

    [47] F R WAGNER, A MELNINKAITIS, G BATAVIČIUTĖ et al. Characterization of damage precursor density from laser damage probability measurements with non-Gaussian beams. Boulder, 9632, 334-339(2015).

    [48] G BATAVIČIUTĖ, P GRIGAS, L SMALAKYS et al. Revision of laser-induced damage threshold evaluation from damage probability data. Review of Scientific Instruments, 84(2013).

    [49] C J STOLZ, R A NEGRES, J W ARENBERG. Monte Carlo analysis of ISO and raster scan laser damage protocols. Broomfield (Boulder area), 11173, 139-148(2019).

    [50] C J STOLZ, M D THOMAS, A J GRIFFIN. BDS thin film damage competition, 7132(2008).

    [51] C J STOLZ, D RISTAU, M TUROWSKI et al. Thin film femtosecond laser damage competition, 7504, 273-278(7504).

    [52] C J STOLZ, M CAPUTO, A J GRIFFIN et al. BDS thin film UV antireflection laser damage competition, 7842, 62-67(7842).

    [53] C J STOLZ, H BLASCHKE, L JENSEN et al. Excimer mirror thin film laser damage competition. Laser-Induced Damage in Optical Materials, 8190, 81-89(2011).

    [54] C J STOLZ, J RUNKEL. Brewster angle polarizing beamsplitter laser damage competition: P polarization, 8530, 134-140(8530).

    [55] C J STOLZ, J RUNKEL. Brewster angle thin film polarizing beamsplitter laser damage competition: “S” polarization, 8885, 18-25(8885).

    [56] C J STOLZ, M CAPUTO, A J GRIFFIN et al. 1064-nm Fabry-Perot transmission filter laser damage competition, 9237, 81-86(9237).

    [57] C J STOLZ, R A NEGRES, K KAFKA et al. 150-ps broadband low dispersion mirror thin film damage competition. Boulder, 9632, 39-46(2015).

    [58] R NEGRES, C STOLZ, K R KAFKA et al. 40-fs broadband low dispersion mirror thin film damage competition, 10014, 50-58(2016).

    [59] R NEGRES, C STOLZ, M D THOMAS et al. 355-nm, nanosecond laser mirror thin film damage competition, 10447, 55-62(2017).

    [60] R A NEGRES, C J STOLZ, M D THOMAS et al. 1064-nm, nanosecond laser mirror thin film damage competition. Broomfield (Boulder area), 11173, 19-26(2019).

    [61] R A NEGRES, C J STOLZ, G BATAVIČIŪTĖ et al. 532-nm, nanosecond laser mirror thin film damage competition, 11514, 22-30(2020).

    [62] R A NEGRES, C J STOLZ, G BATAVIČIŪTĖ et al. 515-nm, femtosecond laser mirror thin film damage competition, 11910(2021).

    [63] M L PROTOPAPA, F DE TOMASI, M R PERRONE et al. Laser damage studies on MgF2 thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19, 681-688(2001).

    [64] X B CHENG, S Y DONG, S ZHI et al. Waterproof coatings for high-power laser cavities. Light: Science & Applications, 8, 12(2019).

    [65] [65] 65黄晚晴. 大口径熔石英元件表面激光损伤特性研究[D]. 北京: 中国工程物理研究院, 2009.HUANGW Q. Study on Laser Damage Characteristics of Large Diameter Fused Shi Ying Components[D]. Beijing: China Academy of Engineering Physics, 2009. (in Chinese)

    [66] [66] 66张立卫. 应力条件下真空光学窗口激光损伤研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.ZHANGL W. Research on Laser-induced Damage of Vacuum Optical Windows under Stress[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)

    [67] [67] 67赵元安. 脉冲激光对光学薄膜的损伤机理及测试技术研究[D]. 上海: 中国科学院上海光学精密机械研究所, 2005.ZHAOY A. Study on Damage Mechanism and Testing Technology of Optical Thin Film Caused by Laser Pulse[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2005. (in Chinese)

    [68] [68] 68程春娟. 激光薄膜损伤阈值测试控制系统研究[D]. 西安: 西安工业大学, 2010. doi: 10.7666/d.y1750038CHENGCH J. Research on Testing System Control of Laser Film Damage Threshold[D]. Xi'an: Xi'an Technological University, 2010. (in Chinese). doi: 10.7666/d.y1750038

    [69] [69] 69韩文钦, 郭喜庆, 解官宝, 等. VO2光学薄膜的脉冲激光损伤特性测试[J]. 应用光学, 2013, 34(4): 690-694.HANW Q, GUOX Q, XIEG B, et al. Pulse laser damage characteristic measurement of VO2 optical thin film[J]. Journal of Applied Optics, 2013, 34(4): 690-694. (in Chinese)

    [70] [70] 70隋婷婷. 紫外光学元件激光损伤特性测试与分析[D]. 长沙: 国防科学技术大学, 2015.SUIT T. Measurement and Analysis of Laser-induced Damage Characteristics for Ultraviolet Optics[D]. Changsha: National University of Defense Technology, 2015. (in Chinese)

    [71] [71] 71王菲, 李玉瑶, 车英, 等. 平顶激光束诱导薄膜损伤阈值测量系统[J]. 光子学报, 2016, 45(3): 17-22. doi: 10.3788/gzxb20164503.0314003WANGF, LIY Y, CHEY, et al. Measurement system of flattop laser induced damage threshold to film[J]. Acta Photonica Sinica, 2016, 45(3): 17-22. (in Chinese). doi: 10.3788/gzxb20164503.0314003

    [72] B MA, Y Y ZHANG, H P MA et al. Automated laser damage threshold test systems of different test modes for optical elements, 8530, 403-410(8530).

    [73] Y A ZHAO, G H HU, S J LIU et al. Fast inspection of bulk and surface defects of large aperture optics in high power lasers, 9525, 690-696(2015).

    [74] R PAKALNYTĖ, E PUPKA, A MELNINKAITIS. Direct comparison of laser-induced damage threshold testing protocols on dielectric mirrors: effect of nanosecond laser pulse shape at NIR and UV wavelengths. Broomfield (Boulder area), 11173, 92-101(2019).

    [75] [75] 75ROGERM W. 光学材料的激光诱导损伤[M]. 成都: 西南交通大学出版社, 2011.ROGERM W. Laser-induced Damage of Optical Materials[M]. Chengdu: Southwest Jiaotong University Press, 2011. (in Chinese)

    [76] D RISTAU. Laser-induced damage in optical materials(2015).

    [77] B MA, K WANG, J Q HAN et al. Difference in laser-induced damage behavior between back and front surfaces. Laser Physics, 30(2020).

    [78] Y K DANILEĬKO, A A MANENKOV, V S NECHITAĬLO. The mechanism of laser-induced damage in transparent materials, caused by thermal explosion of absorbing inhomogeneities. Soviet Journal of Quantum Electronics, 8, 116-118(1978).

    [79] Z X SHEN, X D WANG, X W YE et al. Influence of cleaning process on the laser induced damage threshold of substrates. OSA Technical Digest (Optica Publishing Group(2010).

    [80] X B CHENG, J L ZHANG, T DING et al. The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses. Light: Science & Applications, 2(2013).

    [81] Z S WANG, G H BAO, H F JIAO et al. Interfacial damage in a Ta2O5/SiO2 double cavity filter irradiated by 1064 nm nanosecond laser pulses. Optics Express, 21, 30623-30632(2013).

    [82] X B CHENG, H F JIAO, J T LU et al. Nanosecond pulsed laser damage characteristics of HfO2/SiO2 high reflection coatings irradiated from crystal-film interface. Optics Express, 21, 14867-14875(2013).

    [83] [83] 83詹光达, 马彬, 张艳云, 等. 预处理效应对1064nm反射膜本征损伤性能的影响[J]. 红外与激光工程, 2014, 43(6): 1715-1721.ZHANG D, MAB, ZHANGY Y, et al. Influence of laser conditioning effects on intrinsic damage property of high reflection film at 1064 nm[J]. Infrared and Laser Engineering, 2014, 43(6): 1715-1721. (in Chinese)

    [84] M L LU, B MA, G D ZHAN et al. Effect of etching on the laser-induced damage properties of artificial defects under 1064-nm laser irradiation. Optical Engineering, 53, 122505(2014).

    [85] X B CHENG, A TUNIYAZI, J L ZHANG et al. Nanosecond laser-induced damage of nodular defects in dielectric multilayer mirrors. Applied Optics, 53, A62-A69(2014).

    [86] B MA, M L LU, G D ZHAN et al. Effect of etching morphology of artificial defect on laser-induced damage properties under 355  nm laser irradiation. Applied Optics, 54, 3365-3371(2015).

    [87] X B CHENG, A TUNIYAZI, Z Y WEI et al. Physical insight toward electric field enhancement at nodular defects in optical coatings. Optics Express, 23, 8609-8619(2015).

    [88] B MA, L ZHANG, M L LU et al. Properties of defect-induced multiple pulse laser damage of transmission components. Applied Optics, 55, 7078-7085(2016).

    [89] H P MA, X B CHENG, J L ZHANG et al. Electric-field intensity enhancement of a series of artificial nodules in a broadband high-reflection coating. Optical Engineering, 56(2016).

    [90] Z S WANG, H P MA, X B CHENG et al. Nanosecond laser-induced damage of high-reflection coatings: NUV through NIR, 10014, 34-43(10014).

    [91] Z SONG, X B CHENG, H P MA et al. The influence of coating thickness on laser damage characteristics of anti-reflection coatings irradiated by nanosecond laser pulses. OSA Technical Digest (Optica Publishing Group(2016).

    [92] J L ZHANG, X Q BU, H F JIAO et al. Laser damage properties of broadband low-dispersion mirrors in sub-nanosecond laser pulse. Optics Express, 25, 305-312(2017).

    [93] X B CHENG, T HE, J L ZHANG et al. Contribution of angle-dependent light penetration to electric-field enhancement at nodules in optical coatings. Optics Letters, 42, 2086-2089(2017).

    [94] H P MA, X B CHENG, J L ZHANG et al. Effect of boundary continuity on nanosecond laser damage of nodular defects in high-reflection coatings. Optics Letters, 42, 478-481(2017).

    [95] [95] 95谢凌云, 何涛, 张锦龙, 等. 节瘤缺陷平坦化提高高反射膜的激光损伤阈值[J]. 强激光与粒子束, 2018, 30(9): 16-22. doi: 10.11884/HPLPB201830.180067XIEL Y, HET, ZHANGJ L, et al. Improve the LIDT of high-reflection coatings by planarizing nodular defects[J]. High Power Laser and Particle Beams, 2018, 30(9): 16-22. (in Chinese). doi: 10.11884/HPLPB201830.180067

    [96] J L ZHANG, H F JIAO, B MA et al. Laser-induced damage of nodular defects in dielectric multilayer coatings. Optical Engineering, 57, 121909(2018).

    [97] L Y XIE, H S LIU, J ZHAO et al. Influence of dry etching on the properties of SiO2 and HfO2 single layers. Applied Optics, 59, A128-A134(2020).

    [98] L Y XIE, J L ZHANG, Z Y ZHANG et al. Rectangular multilayer dielectric gratings with broadband high diffraction efficiency and enhanced laser damage resistance. Optics Express, 29, 2669-2678(2021).

    [99] B MA, T DING, H F JIAO et al. LIDT of HfO2/SiO2 HR films by different test modes at 1064 nm and 532 nm, 7842, 132-142(7842).

    [100] [100] 100周刚, 马彬, 焦宏飞, 等. 1064 nm高反射薄膜激光损伤阈值测量方法[J]. 强激光与粒子束, 2011, 23(4): 963-968. doi: 10.3788/hplpb20112304.0963ZHOUG, MAB, JIAOH F, et al. Laser damage threshold measurements of 1 064 nm high-reflection mirrors[J]. High Power Laser and Particle Beams, 2011, 23(4): 963-968. (in Chinese). doi: 10.3788/hplpb20112304.0963

    [101] [101] 101刘红婕, 王凤蕊, 耿峰, 等. 荧光成像技术无损探测光学元件亚表面缺陷[J]. 光学 精密工程, 2020, 28(1): 50-59. doi: 10.3788/ope.20202801.0050LIUH J, WANGF R, GENGF, et al. Nondestructive detection of optics subsurface defects by fluorescence image technique[J]. Opt. Precision Eng., 2020, 28(1): 50-59. (in Chinese). doi: 10.3788/ope.20202801.0050

    [102] B MA, M L LU, K WANG et al. Depth position recognition-related laser-induced damage test method based on initial transient damage features. Optics Express, 24, 17698-17710(2016).

    [103] [103] 103王可, 秦艳, 韩佳岐, 等. 纳秒激光诱导透射元件粒子喷射的分布特征[J]. 红外与激光工程, 2020, 49(11): 156-163. doi: 10.3788/irla.17_2020-0065WANGK, QINY, HANJ Q, et al. Distribution characteristic of ejected particles from transmissive element induced by nanosecond laser[J]. Infrared and Laser Engineering, 2020, 49(11): 156-163. (in Chinese). doi: 10.3788/irla.17_2020-0065

    [104] B MA, J Q HAN, J LI et al. Damage characteristics of dual-band high reflectors affected by nodule defects in the femtosecond regime. Chinese Optics Letters, 23-27(2021).

    [105] B MA, H P MA, H F JIAO et al. Laser-damage growth characteristics of fused silica under 1064- and 532-nm laser irradiation. Optical Engineering, 52, 116106(2013).

    [106] B MA, H P MA, H F JIAO et al. Damage growth characteristics of different initial damage sites of fused silica under 355 nm small laser beam irradiation. Optics & Laser Technology, 57, 136-144(2014).

    [107] B MA, Y Y ZHANG, H P MA et al. Influence of incidence angle and polarization state on the damage site characteristics of fused silica. Applied Optics, 53, A96-A102(2014).

    [108] K WANG, B MA, J Q HAN et al. Morphological and damage growth characteristics of shell-type damage of fused silica optics induced by ultraviolet laser pulses. Applied Optics, 58, 8882-8888(2019).

    [109] L ZHANG, B MA, K WANG et al. Morphology and growth properties of nano- and submicrometer-scale initial damage sites under 355  nm wavelength pulsed laser irradiation. Applied Optics, 57, 3166-3171(2018).

    Tools

    Get Citation

    Copy Citation Text

    Bin MA, Zhiqiang HOU, Hongfei JIAO, Jinlong ZHANG, Zhengxiang SHEN, Xinbin CHENG, Zhanshan WANG. Pulsed laser-induced damage threshold measurement and damage performance of optical components[J]. Optics and Precision Engineering, 2022, 30(21): 2805

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 18, 2022

    Accepted: --

    Published Online: Nov. 28, 2022

    The Author Email: WANG Zhanshan (wangzs@tongji.edu.cn)

    DOI:10.37188/OPE.20223021.2805

    Topics