Optics and Precision Engineering, Volume. 30, Issue 21, 2805(2022)

Pulsed laser-induced damage threshold measurement and damage performance of optical components

Bin MA, Zhiqiang HOU, Hongfei JIAO, Jinlong ZHANG, Zhengxiang SHEN, Xinbin CHENG, and Zhanshan WANG*
Author Affiliations
  • Institute of Precision Optical Engineering, MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Shanghai Professional Technical Service Platform for Full-Spectrum and High-Performance Optical Thin Film Devices and Applications, School of Physics Science and Engineering, Tongji University, Shanghai200092, China
  • show less
    References(109)

    [1] [1] 1张小民, 魏晓峰. 中国新一代巨型高峰值功率激光装置发展回顾[J]. 中国激光, 2019, 46(1): 23-32. doi: 10.3788/cjl201946.0100003ZHANGX M, WEIX F. Review of new generation of huge-scale high peak power laser facility in China[J]. Chinese Journal of Lasers, 2019, 46(1): 23-32. (in Chinese). doi: 10.3788/cjl201946.0100003

    [2] LIU F, DONG S Y, ZHANG J L et al. Interface and material engineering for zigzag slab lasers[J]. Scientific Reports, 7, 16699(2017).

    [3] CHENG X B, SHEN Z X, JIAO H F et al. Laser damage study of nodules in electron-beam-evaporated HfO2/SiO2 high reflectors[J]. Applied Optics, 50, C357-C363(2011).

    [4] MAIMAN T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [5] GIULIANO C R. Laser-induced damage to transparent dielectric materials[J]. Applied Physics Letters, 5, 137-139(1964).

    [6] GLASS A J, GUENTHER A H. Laser induced damage of optical elements-a status report[J]. Applied Optics, 12, 637-649(1973).

    [7] LUBIN M J, SOURES J M, GOLDMAN L M. Large-aperture Nd-glass laser amplifier for high-peak-power application[J]. Journal of Applied Physics, 44, 347-350(1973).

    [8] GLASS A, GUENTHER A J M R. Damage in laser glass[J]. ASTM Special Tech Pub, 9, 14(1969).

    [9] WEAVER H J, SOMMARGREN G E, BLISS E S. Self-calibration and analysis of image formation In the sub-nanosecond domain[C], 0048, 63-68(1975).

    [10] MILAM D. Laser-induced damage at 1064 nm, 125 psec[J]. Applied Optics, 16, 1204-1213(1977).

    [11] LOWDERMILK W, MILAM D. Laser-induced surface and coating damage[J]. IEEE Journal of Quantum Electronics, 17, 1888-1903(1981).

    [12] JACOBS S D, CERQUA K A, MARSHALL K L et al. Liquid-crystal laser optics: design, fabrication, and performance[J]. Journal of the Optical Society of America B, 5, 1962-1979(1988).

    [13] GARREC P, DIJON J et al. R-on-1 automatic mapping: a new tool for laser damage testing[C], 2714, 90-101(1995).

    [14] MANN K, KAISER N et al. Laser conditioning of LaF3/MgF2 dielectric coatings at 248 nm[J]. Applied Optics, 35, 5613-5619(1996).

    [15] GUENTHER K H, HUMPHERYS T W, BALMER J et al. 1.06-μm laser damage of thin film optical coatings: a round-robin experiment involving various pulse lengths and beam diameters[J]. Applied Optics, 23, 3743-3752(1984).

    [16] Lasers and laser-related equipment - Test methods for laser-induced damage threshold - Part 2: Threshold determination: ISO 21254-2: 2011[S]. International Organization for Standardization[standard](2011).

    [17] SEITEL S C, GIESEN A, BECKER J. International standard test method for laser-induced damage threshold of optical surfaces[C]. CO, 1848, 2-3(1993).

    [18] Lasers and laser-related equipment-Determination of laser-induced damage threshold of optical surfaces-Part 1: 1-on-1 test: ISO 11254-1: 2000[S]. International Organization for Standardization[standard](2000).

    [19] Lasers and laser-related equipment - Determination of laser-induced damage threshold of optical surfaces - Part 2: S-on-1 test: ISO 11254-2: 2001[S]. International Organization for Standardization[standard](2001).

    [20] [20] 20国家技术监督局. 光学表面激光损伤阈值测试方法 第1部分: 1对1测试: GB/T 16601—1996[S]. 北京: 中国标准出版社, 1997. doi: 10.3969/j.issn.1004-0668.2003.01.024State Bureau of Quality and Technical Supervision of the People's Republic of China. Test methods for laser induced damage threshold of optical surfaces Part 1: 1 on 1 test: GB/T 16601—1996[S]. Beijing: Standards Press of China, 1997. (in Chinese). doi: 10.3969/j.issn.1004-0668.2003.01.024

    [21] [21] 21激光器和激光相关设备-激光损伤阈值测试方法-第2部分:阈值确定: GB/T 16601.2[S]. 国家质量监督检验检疫总局, 国家标准化管理委员会, 2017.Lasers and laser-related equipment-Test methods for laser-induced damage threshold-Part 2: Threshold determination: GB/T 16601.2[S]. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China, 2017. (in Chinese)

    [22] VOLTO P, ROUSSEL A, CORDILLOT C et al. Refined statistical measurements of laser damage[C], 3902, 332-338(1999).

    [23] WANG D Y H, ENGLISH R E, AIKENS D M. Implementation of ISO 10110 optics drawing standards for the National Ignition Facility[C]. Denver, 3782, 502-508(1999).

    [24] WOLFE J. Small optics laser damage test procedure[J]. Technical Report(2017).

    [25] CHOW R, RUNKEL M, TAYLOR J R. Laser damage testing of small optics for the National Ignition Facility[J]. Applied Optics, 44, 3527-3531(2005).

    [26] BORDEN M, FOLTA J, STOLZ C et al. Improved method for laser damage testing coated optics[C], 5991, 694-703(2005).

    [27] NESS D C, STREATER A D. Automated system for laser damage testing of coated optics[C], 5991, 2006(2005).

    [28] HOOSE J. The Omega Fusion Laser System[C], 103, 22-28(1977).

    [29] MAYWAR D N, KELLY J H, WAXER L J et al. OMEGA EP high-energy petawatt laser: progress and prospects[J]. Journal of Physics: Conference Series, 112(2008).

    [30] PERRY M D, PENNINGTON D, STUART B C et al. Petawatt laser pulses[J]. Optics Letters, 24, 160-162(1999).

    [31] MOSES E I. Ignition on the national ignition facility[J]. Journal of Physics: Conference Series, 112(2008).

    [32] LEEMANS W P, DANIELS J, DESHMUKH A et al. BELLA laser and operations[J]. Proceedings of PAC2013, 1097-1100(2013).

    [33] EBRARDT J, CHAPUT J M. LMJ on its way to fusion[J]. Journal of Physics: Conference Series, 244(2010).

    [34] DANSON C N, BRUMMITT P A, CLARKE R J et al. Vulcan petawatt - An ultra-high-intensity interaction facility[J]. Nuclear Fusion, 44(2004).

    [35] BAGNOUD V, AURAND B, BLAZEVIC A et al. Commissioning and early experiments of the PHELIX facility[J]. Applied Physics B, 100, 137-150(2010).

    [36] LOZHKAREV V V, FREIDMAN G I, GINZBURG V N et al. 200 TW 45 fs laser based on optical parametric chirped pulse amplification[J]. Optics Express, 14, 446-454(2006).

    [37] ZHU J Q, ZHU J, LI X C et al. Status and development of high-power laser facilities at the NLHPLP[J]. High Power Laser Science and Engineering, 6, 21-43(2018).

    [38] ZHENG W G, WEI X F, ZHU Q H et al. Laser performance of the SG-III laser facility[J]. High Power Laser Science and Engineering, 4(2016).

    [39] WOLFE J E, SCHRAUTH S E. Automated laser-damage test system with real-time damage event imaging and detection[C], 6403, 688-696(6403).

    [40] KOZLOV A A, PAPERNOV S, OLIVER J B et al. Study of the picosecond laser damage in HfO2/SiO20based thin-film coatings in vacuum[C], 10014, 204-210(10014).

    [41] XU Y J, EMMERT L A, RUDOLPH W. Spatio-TEmporally REsolved Optical Laser Induced Damage (STEREO LID) technique for material characterization[J]. Optics Express, 23, 21607-21614(2015).

    [42] RISTAU D, JUPÉ M, STARKE K. Laser damage thresholds of optical coatings[J]. Thin Solid Films, 518, 1607-1613(2009).

    [43] GALLAIS L, NATOLI J Y, AMRA C. Statistical study of single and multiple pulse laser-induced damage in glasses[J]. Optics Express, 10, 1465-1474(2002).

    [44] BATAVIČIŪTĖ G, ŠČIUKA M, MELNINKAITIS A. Direct comparison of defect ensembles extracted from damage probability and raster scan measurements[J]. Journal of Applied Physics, 118, 105306(2015).

    [45] LAMAIGNèRE L, OLLé A, CHOREL M et al. Round-robin measurements of the laser-induced damage threshold with sub-picosecond pulses on optical single layers[J]. Optical Engineering, 60(2020).

    [46] SCHRAMEYER S, JUPé M, JENSEN L et al. Algorithm for cumulative damage probability calculations in S-on-1 laser damage testing[C], 8885, 195-201(8885).

    [47] WAGNER F R, MELNINKAITIS A, BATAVIČIUTĖ G et al. Characterization of damage precursor density from laser damage probability measurements with non-Gaussian beams[C]. Boulder, 9632, 334-339(2015).

    [48] BATAVIČIUTĖ G, GRIGAS P, SMALAKYS L et al. Revision of laser-induced damage threshold evaluation from damage probability data[J]. Review of Scientific Instruments, 84(2013).

    [49] STOLZ C J, NEGRES R A, ARENBERG J W. Monte Carlo analysis of ISO and raster scan laser damage protocols[C]. Broomfield (Boulder area), 11173, 139-148(2019).

    [50] STOLZ C J, THOMAS M D, GRIFFIN A J. BDS thin film damage competition[C], 7132(2008).

    [51] STOLZ C J, RISTAU D, TUROWSKI M et al. Thin film femtosecond laser damage competition[C], 7504, 273-278(7504).

    [52] STOLZ C J, CAPUTO M, GRIFFIN A J et al. BDS thin film UV antireflection laser damage competition[C], 7842, 62-67(7842).

    [53] STOLZ C J, BLASCHKE H, JENSEN L et al. Excimer mirror thin film laser damage competition[J]. Laser-Induced Damage in Optical Materials, 8190, 81-89(2011).

    [54] STOLZ C J, RUNKEL J. Brewster angle polarizing beamsplitter laser damage competition: P polarization[C], 8530, 134-140(8530).

    [55] STOLZ C J, RUNKEL J. Brewster angle thin film polarizing beamsplitter laser damage competition: “S” polarization[C], 8885, 18-25(8885).

    [56] STOLZ C J, CAPUTO M, GRIFFIN A J et al. 1064-nm Fabry-Perot transmission filter laser damage competition[C], 9237, 81-86(9237).

    [57] STOLZ C J, NEGRES R A, KAFKA K et al. 150-ps broadband low dispersion mirror thin film damage competition[C]. Boulder, 9632, 39-46(2015).

    [58] NEGRES R, STOLZ C, KAFKA K R et al. 40-fs broadband low dispersion mirror thin film damage competition[C], 10014, 50-58(2016).

    [59] NEGRES R, STOLZ C, THOMAS M D et al. 355-nm, nanosecond laser mirror thin film damage competition[C], 10447, 55-62(2017).

    [60] NEGRES R A, STOLZ C J, THOMAS M D et al. 1064-nm, nanosecond laser mirror thin film damage competition[C]. Broomfield (Boulder area), 11173, 19-26(2019).

    [61] NEGRES R A, STOLZ C J, BATAVIČIŪTĖ G et al. 532-nm, nanosecond laser mirror thin film damage competition[C], 11514, 22-30(2020).

    [62] NEGRES R A, STOLZ C J, BATAVIČIŪTĖ G et al. 515-nm, femtosecond laser mirror thin film damage competition[C], 11910(2021).

    [63] PROTOPAPA M L, DE TOMASI F, PERRONE M R et al. Laser damage studies on MgF2 thin films[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19, 681-688(2001).

    [64] CHENG X B, DONG S Y, ZHI S et al. Waterproof coatings for high-power laser cavities[J]. Light: Science & Applications, 8, 12(2019).

    [65] [65] 65黄晚晴. 大口径熔石英元件表面激光损伤特性研究[D]. 北京: 中国工程物理研究院, 2009.HUANGW Q. Study on Laser Damage Characteristics of Large Diameter Fused Shi Ying Components[D]. Beijing: China Academy of Engineering Physics, 2009. (in Chinese)

    [66] [66] 66张立卫. 应力条件下真空光学窗口激光损伤研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.ZHANGL W. Research on Laser-induced Damage of Vacuum Optical Windows under Stress[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)

    [67] [67] 67赵元安. 脉冲激光对光学薄膜的损伤机理及测试技术研究[D]. 上海: 中国科学院上海光学精密机械研究所, 2005.ZHAOY A. Study on Damage Mechanism and Testing Technology of Optical Thin Film Caused by Laser Pulse[D]. Shanghai: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2005. (in Chinese)

    [68] [68] 68程春娟. 激光薄膜损伤阈值测试控制系统研究[D]. 西安: 西安工业大学, 2010. doi: 10.7666/d.y1750038CHENGCH J. Research on Testing System Control of Laser Film Damage Threshold[D]. Xi'an: Xi'an Technological University, 2010. (in Chinese). doi: 10.7666/d.y1750038

    [69] [69] 69韩文钦, 郭喜庆, 解官宝, 等. VO2光学薄膜的脉冲激光损伤特性测试[J]. 应用光学, 2013, 34(4): 690-694.HANW Q, GUOX Q, XIEG B, et al. Pulse laser damage characteristic measurement of VO2 optical thin film[J]. Journal of Applied Optics, 2013, 34(4): 690-694. (in Chinese)

    [70] [70] 70隋婷婷. 紫外光学元件激光损伤特性测试与分析[D]. 长沙: 国防科学技术大学, 2015.SUIT T. Measurement and Analysis of Laser-induced Damage Characteristics for Ultraviolet Optics[D]. Changsha: National University of Defense Technology, 2015. (in Chinese)

    [71] [71] 71王菲, 李玉瑶, 车英, 等. 平顶激光束诱导薄膜损伤阈值测量系统[J]. 光子学报, 2016, 45(3): 17-22. doi: 10.3788/gzxb20164503.0314003WANGF, LIY Y, CHEY, et al. Measurement system of flattop laser induced damage threshold to film[J]. Acta Photonica Sinica, 2016, 45(3): 17-22. (in Chinese). doi: 10.3788/gzxb20164503.0314003

    [72] MA B, ZHANG Y Y, MA H P et al. Automated laser damage threshold test systems of different test modes for optical elements[C], 8530, 403-410(8530).

    [73] ZHAO Y A, HU G H, LIU S J et al. Fast inspection of bulk and surface defects of large aperture optics in high power lasers[C], 9525, 690-696(2015).

    [74] PAKALNYTĖ R, PUPKA E, MELNINKAITIS A. Direct comparison of laser-induced damage threshold testing protocols on dielectric mirrors: effect of nanosecond laser pulse shape at NIR and UV wavelengths[C]. Broomfield (Boulder area), 11173, 92-101(2019).

    [75] [75] 75ROGERM W. 光学材料的激光诱导损伤[M]. 成都: 西南交通大学出版社, 2011.ROGERM W. Laser-induced Damage of Optical Materials[M]. Chengdu: Southwest Jiaotong University Press, 2011. (in Chinese)

    [76] RISTAU D[M]. Laser-induced damage in optical materials(2015).

    [77] MA B, WANG K, HAN J Q et al. Difference in laser-induced damage behavior between back and front surfaces[J]. Laser Physics, 30(2020).

    [78] DANILEĬKO Y K, MANENKOV A A, NECHITAĬLO V S. The mechanism of laser-induced damage in transparent materials, caused by thermal explosion of absorbing inhomogeneities[J]. Soviet Journal of Quantum Electronics, 8, 116-118(1978).

    [79] SHEN Z X, WANG X D, YE X W et al. Influence of cleaning process on the laser induced damage threshold of substrates[J]. OSA Technical Digest (Optica Publishing Group(2010).

    [80] CHENG X B, ZHANG J L, DING T et al. The effect of an electric field on the thermomechanical damage of nodular defects in dielectric multilayer coatings irradiated by nanosecond laser pulses[J]. Light: Science & Applications, 2(2013).

    [81] WANG Z S, BAO G H, JIAO H F et al. Interfacial damage in a Ta2O5/SiO2 double cavity filter irradiated by 1064 nm nanosecond laser pulses[J]. Optics Express, 21, 30623-30632(2013).

    [82] CHENG X B, JIAO H F, LU J T et al. Nanosecond pulsed laser damage characteristics of HfO2/SiO2 high reflection coatings irradiated from crystal-film interface[J]. Optics Express, 21, 14867-14875(2013).

    [83] [83] 83詹光达, 马彬, 张艳云, 等. 预处理效应对1064nm反射膜本征损伤性能的影响[J]. 红外与激光工程, 2014, 43(6): 1715-1721.ZHANG D, MAB, ZHANGY Y, et al. Influence of laser conditioning effects on intrinsic damage property of high reflection film at 1064 nm[J]. Infrared and Laser Engineering, 2014, 43(6): 1715-1721. (in Chinese)

    [84] LU M L, MA B, ZHAN G D et al. Effect of etching on the laser-induced damage properties of artificial defects under 1064-nm laser irradiation[J]. Optical Engineering, 53, 122505(2014).

    [85] CHENG X B, TUNIYAZI A, ZHANG J L et al. Nanosecond laser-induced damage of nodular defects in dielectric multilayer mirrors[J]. Applied Optics, 53, A62-A69(2014).

    [86] MA B, LU M L, ZHAN G D et al. Effect of etching morphology of artificial defect on laser-induced damage properties under 355  nm laser irradiation[J]. Applied Optics, 54, 3365-3371(2015).

    [87] CHENG X B, TUNIYAZI A, WEI Z Y et al. Physical insight toward electric field enhancement at nodular defects in optical coatings[J]. Optics Express, 23, 8609-8619(2015).

    [88] MA B, ZHANG L, LU M L et al. Properties of defect-induced multiple pulse laser damage of transmission components[J]. Applied Optics, 55, 7078-7085(2016).

    [89] MA H P, CHENG X B, ZHANG J L et al. Electric-field intensity enhancement of a series of artificial nodules in a broadband high-reflection coating[J]. Optical Engineering, 56(2016).

    [90] WANG Z S, MA H P, CHENG X B et al. Nanosecond laser-induced damage of high-reflection coatings: NUV through NIR[C], 10014, 34-43(10014).

    [91] SONG Z, CHENG X B, MA H P et al. The influence of coating thickness on laser damage characteristics of anti-reflection coatings irradiated by nanosecond laser pulses[J]. OSA Technical Digest (Optica Publishing Group(2016).

    [92] ZHANG J L, BU X Q, JIAO H F et al. Laser damage properties of broadband low-dispersion mirrors in sub-nanosecond laser pulse[J]. Optics Express, 25, 305-312(2017).

    [93] CHENG X B, HE T, ZHANG J L et al. Contribution of angle-dependent light penetration to electric-field enhancement at nodules in optical coatings[J]. Optics Letters, 42, 2086-2089(2017).

    [94] MA H P, CHENG X B, ZHANG J L et al. Effect of boundary continuity on nanosecond laser damage of nodular defects in high-reflection coatings[J]. Optics Letters, 42, 478-481(2017).

    [95] [95] 95谢凌云, 何涛, 张锦龙, 等. 节瘤缺陷平坦化提高高反射膜的激光损伤阈值[J]. 强激光与粒子束, 2018, 30(9): 16-22. doi: 10.11884/HPLPB201830.180067XIEL Y, HET, ZHANGJ L, et al. Improve the LIDT of high-reflection coatings by planarizing nodular defects[J]. High Power Laser and Particle Beams, 2018, 30(9): 16-22. (in Chinese). doi: 10.11884/HPLPB201830.180067

    [96] ZHANG J L, JIAO H F, MA B et al. Laser-induced damage of nodular defects in dielectric multilayer coatings[J]. Optical Engineering, 57, 121909(2018).

    [97] XIE L Y, LIU H S, ZHAO J et al. Influence of dry etching on the properties of SiO2 and HfO2 single layers[J]. Applied Optics, 59, A128-A134(2020).

    [98] XIE L Y, ZHANG J L, ZHANG Z Y et al. Rectangular multilayer dielectric gratings with broadband high diffraction efficiency and enhanced laser damage resistance[J]. Optics Express, 29, 2669-2678(2021).

    [99] MA B, DING T, JIAO H F et al. LIDT of HfO2/SiO2 HR films by different test modes at 1064 nm and 532 nm[C], 7842, 132-142(7842).

    [100] [100] 100周刚, 马彬, 焦宏飞, 等. 1064 nm高反射薄膜激光损伤阈值测量方法[J]. 强激光与粒子束, 2011, 23(4): 963-968. doi: 10.3788/hplpb20112304.0963ZHOUG, MAB, JIAOH F, et al. Laser damage threshold measurements of 1 064 nm high-reflection mirrors[J]. High Power Laser and Particle Beams, 2011, 23(4): 963-968. (in Chinese). doi: 10.3788/hplpb20112304.0963

    [101] [101] 101刘红婕, 王凤蕊, 耿峰, 等. 荧光成像技术无损探测光学元件亚表面缺陷[J]. 光学 精密工程, 2020, 28(1): 50-59. doi: 10.3788/ope.20202801.0050LIUH J, WANGF R, GENGF, et al. Nondestructive detection of optics subsurface defects by fluorescence image technique[J]. Opt. Precision Eng., 2020, 28(1): 50-59. (in Chinese). doi: 10.3788/ope.20202801.0050

    [102] MA B, LU M L, WANG K et al. Depth position recognition-related laser-induced damage test method based on initial transient damage features[J]. Optics Express, 24, 17698-17710(2016).

    [103] [103] 103王可, 秦艳, 韩佳岐, 等. 纳秒激光诱导透射元件粒子喷射的分布特征[J]. 红外与激光工程, 2020, 49(11): 156-163. doi: 10.3788/irla.17_2020-0065WANGK, QINY, HANJ Q, et al. Distribution characteristic of ejected particles from transmissive element induced by nanosecond laser[J]. Infrared and Laser Engineering, 2020, 49(11): 156-163. (in Chinese). doi: 10.3788/irla.17_2020-0065

    [104] MA B, HAN J Q, LI J et al. Damage characteristics of dual-band high reflectors affected by nodule defects in the femtosecond regime[J]. Chinese Optics Letters, 23-27(2021).

    [105] MA B, MA H P, JIAO H F et al. Laser-damage growth characteristics of fused silica under 1064- and 532-nm laser irradiation[J]. Optical Engineering, 52, 116106(2013).

    [106] MA B, MA H P, JIAO H F et al. Damage growth characteristics of different initial damage sites of fused silica under 355 nm small laser beam irradiation[J]. Optics & Laser Technology, 57, 136-144(2014).

    [107] MA B, ZHANG Y Y, MA H P et al. Influence of incidence angle and polarization state on the damage site characteristics of fused silica[J]. Applied Optics, 53, A96-A102(2014).

    [108] WANG K, MA B, HAN J Q et al. Morphological and damage growth characteristics of shell-type damage of fused silica optics induced by ultraviolet laser pulses[J]. Applied Optics, 58, 8882-8888(2019).

    [109] ZHANG L, MA B, WANG K et al. Morphology and growth properties of nano- and submicrometer-scale initial damage sites under 355  nm wavelength pulsed laser irradiation[J]. Applied Optics, 57, 3166-3171(2018).

    Tools

    Get Citation

    Copy Citation Text

    Bin MA, Zhiqiang HOU, Hongfei JIAO, Jinlong ZHANG, Zhengxiang SHEN, Xinbin CHENG, Zhanshan WANG. Pulsed laser-induced damage threshold measurement and damage performance of optical components[J]. Optics and Precision Engineering, 2022, 30(21): 2805

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 18, 2022

    Accepted: --

    Published Online: Nov. 28, 2022

    The Author Email: Zhanshan WANG (wangzs@tongji.edu.cn)

    DOI:10.37188/OPE.20223021.2805

    Topics