Journal of Inorganic Materials, Volume. 35, Issue 7, 769(2020)
[10] X LI L, J TAO, X GENG et al. Preparation and supercapacitor performance of nitrogen-doped carbon nanotubes from polyaniline modification. Acta Phys-Chim. Sin, 29, 924-929(2013).
[12] V SUBRAMANIAN, H ZHU, R VAJTAI et al. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Physi. Chem. B, 109, 20207-20214(2005).
[37] C LIAO, Y ZUO, Z WEI et al. Russ. Electrochemical performance of metal-organic framework synthesized by a solvothermal method for supercapacitors. J. Electrochem, 49, 983-986(2013).
[38] J XU, Y CHAO, Y XUE et al. Facile synthesis of novel metal-organic nickel hydroxide nanorods for high performance supercapacitor. Electrochim. Acta, 211, 595-602(2016).
[39] J YANG, P XIONG, C ZHENG et al. Metal-organic frameworks: a new promising class of material for high performances supercapacitor electrode. J. Mater. Chem. A, 2, 16640-16644(2014).
[40] L KANG, X SUN S, B KONG L et al. Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors. Chinese Chem. Lett, 25, 957-961(2014).
[41] C QU, Y JIAO, B ZHAO et al. Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy, 26, 66-73(2016).
[43] Y KANNANGARA Y, A RATHNAYAKE U, K SONG J. Redox active multi-layered Zn-pPDA MOFs as high-performance supercapacitor electrode material. Electrochim. Acta, 297, 145-154(2019).
[45] J YANG, C ZHENG, P XIONG et al. Zn-doped Ni-MOF material with a high supercapacitive performance. J. Mater. Chem. A, 2, 19005-19010(2014).
[46] R DÍAZ, G ORCAJO M, A BOTAS J et al. Co8-MOF-5 as electrode for supercapacitors. Mater. Lett, 68, 126-128(2012).
[47] W GAO, D CHEN, H QUAN et al. Fabrication of hierarchical porous metal-organic framework electrode for aqueous asymmetric supercapacitor. ACS Sustain. Chem. Eng, 5, 4144-4153(2017).
[50] K WANG, Z WANG, W XIN et al. Flexible long-chain-linker constructed Ni-based metal-organic frameworks with 1D helical channel and their pseudo-capacitor behavior studies. J. Power Sources, 377, 44-51(2018).
[51] R SALUNKHE R, V KANETI Y, J KIM et al. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Accounts Chem. Res, 49, 2796-2806(2016).
[53] J YANG, C GANG, D CHEN et al. Bimetal-organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage. J. Mater. Chem. A, 5, 23744-23752(2017).
[54] Z WANG, C GAO, Y LIU et al. Electrochemical performance and transformation of Co-MOF/reduced graphene oxide composite. Mater. Lett, 193, 216(2017).
[55] D BENNETT T, K CHEETHAM A. Amorphous metal-organic frameworks. Accounts Chem. Res, 47, 1555-1562(2014).
[56] F YANG, W LI, J TANG B. Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. Joarnal of Alloys & Compounds, 733, 8-14(2018).
[58] Y LAN, Z LI, C YU et al. Application of zeolitic imidazolate framework in supercapacitor. New Chem. Mater, 45, 8-10(2017).
[60] Z LI, Y JIANG, Z WANG et al. Nitrogen-rich core-shell structured particles consisting of carbonized zeolitic imidazolate frameworks and reduced graphene oxide for amperometric determination of hydrogen peroxide. Microchim. Acta, 185, 501(2018).
[61] Z LI, Y LAN, H CAO et al. Carbon materials derived from chitosan/ cellulose cryogel-supported zeolite imidazole frameworks for potential supercapacitor application. Carbohyd. Polym, 175, 223-230(2017).
[62] Z LI, H HE, H CAO et al. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B: Environ, 240, 112-121(2019).
Get Citation
Copy Citation Text
Zehui LI, Meijuan TAN, Yuanhao ZHENG, Yuyang LUO, Qiushi JING, Jingkun JIANG, Mingjie LI.
Category: REVIEW
Received: Aug. 16, 2019
Accepted: --
Published Online: Mar. 3, 2021
The Author Email: LI Mingjie (limj@qibebt.ac.cn)