Optics and Precision Engineering, Volume. 30, Issue 12, 1440(2022)
Multi-source heterogeneous information acquiring test experiment and platform construction for CNC machine tool
[1] [1] 1蔡德程, 陈缤, 关欣, 等. 机床热特性优化研究综述[J]. 上海理工大学学报, 2021, 43(5): 443-451.CAID C, CHENB, GUANX, et al. Review on optimization of thermal characteristics of machine tools[J]. Journal of University of Shanghai for Science and Technology, 2021, 43(5): 443-451.(in Chinese)
[2] J YANG, H SHI, B FENG et al. Thermal error modeling and compensation for a high-speed motorized spindle. The International Journal of Advanced Manufacturing Technology, 77, 1005-1017(2015).
[3] [3] 3邓小雷, 林欢, 王建臣, 等. 机床主轴热设计研究综述[J]. 光学 精密工程, 2018, 26(6): 1415-1429. doi: 10.3788/ope.20182606.1415DENGX L, LINH, WANGJ C, et al. Review on thermal design of machine tool spindles[J]. Opt. Precision Eng., 2018, 26(6): 1415-1429.(in Chinese). doi: 10.3788/ope.20182606.1415
[4] [4] 4林伟青, 傅建中. 拟实环境下高速电主轴建模与热态特性研究[J]. 仪器仪表学报, 2006, 27(S1): 988-990. doi: 10.3321/j.issn:0254-3087.2006.z1.384LINW Q, FUJ Z. Thermal characterizations and model of high speed motorized spindle in virtual-reality[J]. Chinese Journal of Scientific Instrument, 2006, 27(S1): 988-990.(in Chinese). doi: 10.3321/j.issn:0254-3087.2006.z1.384
[5] J YANG, X S MEI, B FENG et al. Experiments and simulation of thermal behaviors of the dual-drive servo feed system. Chinese Journal of Mechanical Engineering, 28, 76-87(2015).
[6] [6] 6尹相铭. 高速电主轴热态特性分析及热误差建模研究[D]. 哈尔滨:哈尔滨理工大学, 2021.YINX M. Thermal Characteristics Analysis and Thermal Error Modeling of High Speed Motorized Spindle [D]. Harbin: Harbin University of Science and Technology, 2021. (in Chinese)
[7] C F CHANG, J J CHEN. Thermal growth control techniques for motorized spindles. Mechatronics, 19, 1313-1320(2009).
[8] J VYROUBAL. Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method. Precision Engineering, 36, 121-127(2012).
[9] Y C CHIU, P H WANG, Y C HU. The thermal error estimation of the machine tool spindle based on machine learning. Machines, 9, 184(2021).
[10] [10] 10李波, 熊迪, 温鹏. 面向数控机床的多源信息采集系统研究[J]. 制造技术与机床, 2019(3): 26-30. doi: 10.19287/j.cnki.1005-2402.2019.03.005LIB, XIONGD, WENP. Research on multi-source information acquisition system for CNC machine tool[J]. Manufacturing Technology & Machine Tool, 2019(3): 26-30.(in Chinese). doi: 10.19287/j.cnki.1005-2402.2019.03.005
[11] L H CHENG, J T LU, S M LI et al. Fusion method and application of several source vibration fault signal spatio-temporal multi-correlation. Applied Sciences, 11, 4318(2021).
[12] [12] 12王艺玮, 邓蕾, 郑联语, 等. 基于多通道融合及贝叶斯理论的刀具剩余寿命预测方法[J]. 机械工程学报, 2021, 57(13): 214-224. doi: 10.3901/jme.2021.13.214WANGY W, DENGL, ZHENGL Y, et al. A multi-channel signal fusion and Bayesian theory based method for tool remaining useful life prediction[J]. Journal of Mechanical Engineering, 2021, 57(13): 214-224.(in Chinese). doi: 10.3901/jme.2021.13.214
[13] Y F YIN, L F GUAN, C G ZHENG. An approach to dynamic sensing data fusion. Sensors, 19, 3668(2019).
[14] [14] 14刘世豪, 张云顺, 陈致水, 等. 热-力耦合效应对风电专用机床主轴振动的影响[J]. 中国矿业大学学报, 2015, 44(5): 893-900. doi: 10.13247/j.cnki.jcumt.000313LIUSH H, ZHANGY SH, CHENZH S, et al. Influence of thermal-mechanical coupling effect on spindle vibration of wind power production machine tool[J]. Journal of China University of Mining & Technology, 2015, 44(5): 893-900.(in Chinese). doi: 10.13247/j.cnki.jcumt.000313
[15] [15] 15邓小雷, 戴温克, 周翎飞, 等. 数控机床主轴-立柱系统热态特性分析与测试[J]. 光学 精密工程, 2020, 28(3): 601-609. doi: 10.3788/ope.20202803.0601DENGX L, DAIW K, ZHOUL F, et al. Thermal characteristics analysis and test of spindle-column system for CNC machine tool[J]. Opt. Precision Eng., 2020, 28(3): 601-609.(in Chinese). doi: 10.3788/ope.20202803.0601
[16] [16] 16阳红, 方辉, 刘立新, 等. 基于热误差神经网络预测模型的机床重点热刚度辨识方法研究[J]. 机械工程学报, 2011, 47(11): 117-124. doi: 10.3901/JME.2011.11.117YANGH, FANGH, LIUL X, et al. Method of key thermal stiffness identification on a machine tool based on the thermal errors neural network prediction model[J]. Journal of Mechanical Engineering, 2011, 47(11): 117-124.(in Chinese). doi: 10.3901/JME.2011.11.117
[17] H WEN, T YAN, Z Q LIU et al. Integrated neural network model with pre-RBF kernels. Science Progress, 104, 368504211026111(2021).
[18] F TAN, M YIN, L WANG et al. Spindle thermal error robust modeling using LASSO and LS-SVM. The International Journal of Advanced Manufacturing Technology, 94, 2861-2874(2018).
Get Citation
Copy Citation Text
Xiaolei DENG, Yushen CHEN, Shupeng GUO, Jiacong ZHENG, Xiaobo SHENG. Multi-source heterogeneous information acquiring test experiment and platform construction for CNC machine tool[J]. Optics and Precision Engineering, 2022, 30(12): 1440
Category: Micro/Nano Technology and Fine Mechanics
Received: Mar. 16, 2022
Accepted: --
Published Online: Jul. 5, 2022
The Author Email: DENG Xiaolei (dxl@zju.edu.cn)