Journal of the Chinese Ceramic Society, Volume. 51, Issue 4, 899(2023)
Key Problems in Microwave Dielectric Characterization of Low-Dielectric-Constant Ceramics
[1] [1] International Telecommunication Union. Provisional final acts[C]// World Radiocommunication Conference 2019 (WRC-19), Sharm El-Sheikh, Egypt, Oct. 28-Nov. 2, 2019. https://www.itu.int/en/ ITU-R/conferences/wrc/2019/Documents/PFA-WRC19-E.pdf.
[3] [3] REANEY I M, IDDLES D. Microwave dielectric ceramics for resonators and filters in mobile phone networks[J]. J Am Ceram Soc, 2006, 89(7): 2063-2072.
[4] [4] SEBASTIAN M T, Ubic R, Jantunen H. Low-loss dielectric ceramic materials and their properties[J]. Int Mater Rev, 2015, 60(7): 392-412.
[5] [5] KIM J S, NGUYEN N H, LIM J B, et al. Low-temperature sintering and microwave dielectric properties of the Zn2SiO4 ceramics[J]. J Am Ceram Soc, 2008, 91(2): 671-674.
[6] [6] FANG Y, LI L, XIAO Q, et al. Preparation and microwave dielectric properties of cristobalite ceramics[J]. Ceram Int, 2012, 38(6): 4511-4515.
[7] [7] TSUNOOKA T, ANTO M, SUZUKI S, et al. Research and developments for millimeter-wave dielectric forsterite with low dielectric constant, high Q, and zero temperature coefficient of resonant frequency[J]. Jpn J Appl Phys, 2013, 52(9): 09KH02.
[8] [8] ZHOU D, PANG L X, WANG D W, et al. High quality factor, ultralow sintering temperature Li6B4O9 microwave dielectric ceramics with ultralow density for antenna substrates[J]. ACS Sustainable Chem Eng, 2018, 6(8): 11138-11143.
[9] [9] SONG X Q, DU K, LI J, et al. Low-fired fluoride microwave dielectric ceramics with low dielectric loss[J]. Ceram Int, 2019, 45(1): 279-286.
[10] [10] BIAN J J, SUN X Q, XIE Y R. Structural evolution, sintering behavior and microwave dielectric properties of Al1-x(Si0.5Zn0.5)xPO4 ceramics[J]. J Eur Ceram Soc, 2019, 39(14): 4139-4143.
[11] [11] TANG Y, ZHANG Z, LI J, et al. A3Y2Ge3O12 (A=Ca, Mg): Two novel microwave dielectric ceramics with contrasting τf and Q×f[J]. J Eur Ceram Soc, 2020, 40(12): 3989-3995.
[13] [13] HAMEED I, LI L, LIU X Q, et al. Ultra low loss (Mg1-xCax)2SiO4 dielectric ceramics (x=0 to 0.15) for millimeter wave applications[J]. J Am Ceram Soc, 2022, 105(3): 2010-2019.
[14] [14] KAJFEZ D, Guillon P. Dielectric Resonators, 2nd ed.[M]. Atlanta: Noble, 1998.
[16] [16] CHEN L F, ONG C K, NEO C P, et al. Microwave electronics: Measurement and material characterization[M]. Chichester: John Wiley & Sons, 2004.
[17] [17] HAKKI B W, COLEMAN P D. A dielectric resonator method of measuring inductive capacities in the millimeter range[J]. IRE Trans Microwave Theory Tech, 1960, 8(4): 402-410.
[18] [18] COURTNEY W E. Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators[J]. IEEE Trans. Microwave Theory Tech, 1970, 18(8): 476-485.
[19] [19] KAJFEZ D. Incremental frequency rule for computing the Q-factor of a shielded TE0mp dielectric resonator[J]. IEEE Trans Microwave Theory Tech, 1984, 32(8): 941-943.
[20] [20] FAN X C, CHEN X M, LIU X Q. Complex-permittivity measurement on high-Q materials via combined numerical approaches[J]. IEEE Trans Microwave Theory Tech, 2005, 53(10): 3130-3134.
[21] [21] CARTER R G. Accuracy of microwave cavity perturbation measurements[J]. IEEE Trans Microwave Theory Tech, 2001, 49(5): 918-923.
[22] [22] KRUPKA J, GREGORY A P, ROCHARD O C, et al. Uncertainty of complex permittivity measurement by split-post dielectric resonator techniques[J]. J Eur Ceram Soc, 2021, 21(10): 2673-2676.
[23] [23] ANNINO G, BERTOLINI D, CASSETTARI M, et al. Dielectric properties of materials using whispering gallery dielectric resonators: Experiments and perspectives of ultra-wideband characterization[J]. J Chem Phys, 2000, 112(5): 2308-2314.
[25] [25] Microwave Theory Tech, 2005, 52(9): 1443-1451.
[27] [27] LI Lei, YAN Han, CHEN Xiangming. A New method for identifying TE01δ mode during microwave dielectric measurements of low-loss materials[J]. Acta Phys Sin (in Chinese), 2020, 69(12): 128401.
[28] [28] KAJFEZ D. Linear fractional curve fitting for measurement of high Q factors[J]. IEEE Trans Microwave Theory Tech, 1994, 42(7): 1149-1153.
[29] [29] KAJFEZ D, CHEBOLU S, ABDUL-GAFFOOR M R. Uncertainty analysis of the transmission-type measurement of Q-factor[J]. IEEE Trans Microwave Theory Tech, 1999, 47(3): 367-371.
[30] [30] KAJFEZ D. Random and systematic uncertainties of reflection-type Q-factor measurement with network analyzer[J]. IEEE Trans Microwave Theory Tech, 2003, 51(2): 512-519.
[31] [31] LI L, CHEN X M. Effect of sample size on measurement reliability of microwave dielectric properties of low-loss materials by a resonant cavity method[J]. Ferroelectrics, 2012, 434(1): 37-43.
[32] [32] GUREVICH V, TAGANTSEV A. Intrinsic dielectric loss in crystals[J]. Adv Phys, 1991, 40(4): 719-767.
[33] [33] LI L, CHEN X M, Frequency-dependent Qf Value of low-loss Ba2Ti9O20 ceramics at microwave frequencies[J]. Ceram Int, 2012, 38(8): 6831-6835.
[34] [34] LI L, CHEN X M. Frequency-dependent Qf value of microwave dielectric ceramics[J]. J Am Ceram Soc, 2014, 97(10): 3041-3043.
[35] [35] DING Y H, LIU L, YANG Z J, et al. Structure and microwave dielectric characteristics of Hf1-xTixO2 ceramics[J]. J Am Ceram Soc, 2022, 105(2): 1127-1135.
[36] [36] KRUPKA J, HUANG W T, TUNG M J. Complex permittivity measurements of low-loss microwave ceramics employing higher order quasi TE0np modes excited in a cylindrical dielectric sample[J]. Meas Sci Technol, 2005, 16(4): 1014-1020.
[37] [37] KAJFEZ D. Temperature characterization of dielectric-resonator materials[J]. J Eur Ceram Soc, 2001, 21(15): 2663-2667.
[38] [38] LI L, ZHU J Y, CHEN X M. Measurement error of temperature coefficient of resonant frequency for microwave dielectric materials by TE01δ-mode resonant cavity method[J]. IEEE Trans Microwave Theory Tech, 2016, 64(11): 3781-3786.
[39] [39] YANG S, LI L, CHEN X M. Temperature dependence of τf and its origin in MgTiO3-CaTiO3 microwave dielectric composites[J]. J Eur Ceram Soc, 2022, 42(13): 5718-5725.
[40] [40] NAGAI T, INUZUKA T, SUGIYAMA M. Contribution of dielectric constant to change in temperature coefficient of resonant frequency in (Ba1-xSrx)(Mg1/3Ta2/3)O3 Compounds[J]. Jpn J Appl Phys, 1992, 31(9B): 3132-3135.
[41] [41] NENASHEVA E A, MUDROLIUBOVA L P, KARTENKO N F. Microwave dielectric properties of ceramics based on CaTiO3-LnMO3 System (Ln-La, Nd; M-Al, Ga)[J]. J Eur Ceram Soc, 2003, 23(14): 2443-2448.
[42] [42] LI L, FANG Y, CHEN X M. Measurement of dielectric properties of Pb(Zr0.52Ti0.48)O3, Ba0.5Sr0.5Nb2O6 and BaTiO3 ferroelectric ceramics at microwave frequencies[J]. J Am Ceram Soc, 2012, 95(3): 982-985.
[43] [43] JIA Y Q, LUO W K, LI L, et al. MSO4 (M=Ca, Sr, Ba) microwave dielectric ceramics with low dielectric constant[J]. J Am Ceram Soc, 2023, 106(2): 1250-1259.
[44] [44] DAI S X H, HUANG R F, WILCOX D L. Use of titanates to achieve a temperature-stable low-temperature cofired ceramic dielectric for wireless applications[J]. J Am Ceram Soc, 2002, 85(4): 828-832.
[45] [45] KOLODIAZHNYI T, ANNINO G, SPREITZER M, et al. Development of Al2O3-TiO2 composite ceramics for high-power millimeter-wave applications[J]. Acta Mater, 2009, 57(11): 3402-3409.
[46] [46] LI L, YANG S, WU S Y, et al. Nonlinear variation of resonant frequency with temperature and temperature-dependent τf in Al2O3-TiO2 microwave dielectric composites[J]. Appl Phys Lett, 2021, 118(21): 212902.
[47] [47] LI L X, HE X R, YUE T, et al. L2Ti0.85(Mg1/3Nb2/3)0.15O3/MgTiO3/ L2Ti0.85(Mg1/3Nb2/3)0.15O3 tri-layer co-fired microwave dielectric ceramics: a strategy to suppress non-linear variation of resonant frequency with temperature and achieve a high Q value[J]. Appl Phys Lett, 2022, 120(22): 222901.
[48] [48] YANG S, JIA Y Q, LI L, et al. MgTiO3-Ca1-xSm2x/3TiO3 (x=0.2-0.5) microwave dielectric composites with greatly improved temperature stability[J]. J Am Ceram Soc, 2023, 106(1): 456-465.
Get Citation
Copy Citation Text
LI Lei, CHΕN Xiangming. Key Problems in Microwave Dielectric Characterization of Low-Dielectric-Constant Ceramics[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 899
Special Issue:
Received: Aug. 31, 2022
Accepted: --
Published Online: Apr. 15, 2023
The Author Email:
CSTR:32186.14.