Optics and Precision Engineering, Volume. 32, Issue 20, 3085(2024)

Integrating global information and dual-domain attention mechanism for optical remote sensing aircraft target detection

Shanling LIN1,2, Xue ZHANG1,2, Yan CHEN1,2, Jianpu LIN1,2、*, Shanhong LÜ1,2, Zhixian LIN1,2,3, and Tailiang GUO2,3
Author Affiliations
  • 1School of Advanced Manufacturing, Fuzhou University, Quanzhou36225, China
  • 2Fujian Science and Technology Innovation Laboratory for Photoelectric Information, Fuzhou350116, China
  • 3College of Physics and Information Engineering, Fuzhou University, Fuzhou50116, China
  • show less
    References(40)

    [1] 黄泽贤, 吴凡路, 傅瑶. 基于深度学习的遥感图像舰船目标检测算法综述[J]. 光学 精密工程, 31, 2295-2318(2023).

         HUANG Z X, WU F L, FU Y et al. Review of deep learning-based algorithms for ship target detection from remote sensing images[J]. Opt. Precision Eng., 31, 2295-2318(2023).

    [2] 刘忻伟, 朴永杰, 郑亮亮. 面向航天光学遥感复杂场景图像的舰船检测[J]. 光学 精密工程, 31, 892-904(2023).

         LIU X W, PIAO Y J, ZHENG L L et al. Ship detection for complex scene images of space optical remote sensing[J]. Opt. Precision Eng., 31, 892-904(2023).

    [3] WANG Z, LI P, CUI Y C et al. Automatic detection of individual trees in forests based on airborne LiDAR data with a tree region-based convolutional neural network (RCNN)[J]. Remote Sensing, 15, 1024(2023).

    [4] LIU W, ANGUELOV D, ERHAN D et al. SSD: single shot multibox detector[C], 21-37(2016).

    [5] 林珊玲, 彭雪玲, 王栋. 多尺度增强特征融合的钢表面缺陷目标检测[J]. 光学 精密工程, 32, 1075-1086(2024).

         LIN S L, PENG X L, WANG D et al. Object detection of steel surface defect based on multi-scale enhanced feature fusion[J]. Opt. Precision Eng., 32, 1075-1086(2024).

    [6] WU Q F, FENG D Q, CAO C Q et al. Improved mask R-CNN for aircraft detection in remote sensing images[J]. Sensors, 21, 2618(2021).

    [7] WANG B, ZHOU Y, ZHANG H N et al. An aircraft target detection method based on regional convolutional neural network for remote sensing images[C], 474-478(2019).

    [8] ZHANG L B, LI C Y, ZHAO L J et al. A cascaded three-look network for aircraft detection in SAR images[J]. Remote Sensing Letters, 11, 57-65(2020).

    [9] YANG Y K, XIE G R, QU Y. Real-time detection of aircraft objects in remote sensing images based on improved YOLOv4[C], 1156-1164(2021).

    [10] ZHANG D Y, ZHAO Z H, HUANG S H. Investigation of aircraft target detection of remote sensing images based on the improved YOLOv5[C], 266-270(2023).

    [11] ZHAO T J, QIAO N. Research on target detection technology of aircraft satellite images based on improved YOLOv5 model[C], 89-94(2023).

    [14] WANG Q L, WU B G, ZHU P F et al. ECA-net: efficient channel attention for deep convolutional neural networks[C], 11531-11539(2020).

    [15] ZHU X Z, CHENG D Z, ZHANG Z et al. An empirical study of spatial attention mechanisms in deep networks[C], 6687-6696(2019).

    [16] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C], 7464-7475(2023).

    [17] ZHENG Z H, WANG P, LIU W et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12993-13000(2020).

    [18] LIU C, WANG K G, LI Q et al. Powerful-IoU: more straightforward and faster bounding box regression loss with a nonmonotonic focusing mechanism[J]. Neural Networks, 170, 276-284(2024).

    [19] YU W Q, CHENG G, WANG M J et al. MAR20: a benchmark for military aircraft recognition in remote sensing images[J]. National Remote Sensing Bulletin, 27, 2688-2696(2023).

         禹文奇, 程塨, 王美君. MAR20: 遥感图像军用飞机目标识别数据集[J]. 遥感学报, 27, 2688-2696(2023).

    [20] CHENG G, ZHOU P C, HAN J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 7405-7415(2016).

    [21] HE K M, ZHANG X Y, REN S Q et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916(2015).

    [22] CHEN L C, PAPANDREOU G, KOKKINOS I et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40, 834-848(2018).

    [23] LIU S, HUANG D, WANG Y. Receptive field block net for accurate and fast object detection[C], 8, 404-419(2018).

    [25] PARK J, LEE J Y et al. CBAM: Convolutional block attention module[C], 8, 3-19(2018).

    [26] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C], 13708-13717(2021).

    [28] AZAD R, NIGGEMEIER L, HÜTTEMANN M et al. Beyond self-attention: deformable large kernel attention for medical image segmentation[C], 1276-1286(2024).

    [29] OUYANG D L, HE S, ZHANG G Z et al. Efficient multi-scale attention module with cross-spatial learning[C], 1-5(2023).

    [30] LAU K W, PO L M, REHMAN Y A U. Large separable kernel attention: rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications, 236, 121352(2024).

    [31] ZHANG Q L, YANG Y B. SA-net: Shuffle attention for deep convolutional neural networks[C], 2235-2239(2021).

    [32] YANG L, ZHANG R Y, LI L et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C], 11863-11874(24).

    [33] MISRA D, NALAMADA T, ARASANIPALAI A U et al. Rotate to attend: convolutional triplet attention module[C], 3138-3147(2021).

    [34] REN S Q, HE K M, GIRSHICK R et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149(2017).

    CLP Journals

    [1] Shizheng SUN, Lingling HE, Shuai ZHENG, Zeyin HE. Improved lightweight garbage detection method for YOLOv8n in complex environments[J]. Optics and Precision Engineering, 2025, 33(12): 1984

    [2] Shizheng SUN, Lingling HE, Shuai ZHENG, Zeyin HE. Improved lightweight garbage detection method for YOLOv8n in complex environments[J]. Optics and Precision Engineering, 2025, 33(12): 1984

    Tools

    Get Citation

    Copy Citation Text

    Shanling LIN, Xue ZHANG, Yan CHEN, Jianpu LIN, Shanhong LÜ, Zhixian LIN, Tailiang GUO. Integrating global information and dual-domain attention mechanism for optical remote sensing aircraft target detection[J]. Optics and Precision Engineering, 2024, 32(20): 3085

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 22, 2024

    Accepted: --

    Published Online: Jan. 10, 2025

    The Author Email: Jianpu LIN (ljp@fzu.edu.cn)

    DOI:10.37188/OPE.20243220.3085

    Topics