Optics and Precision Engineering, Volume. 32, Issue 20, 3085(2024)

Integrating global information and dual-domain attention mechanism for optical remote sensing aircraft target detection

Shanling LIN1,2, Xue ZHANG1,2, Yan CHEN1,2, Jianpu LIN1,2、*, Shanhong LÜ1,2, Zhixian LIN1,2,3, and Tailiang GUO2,3
Author Affiliations
  • 1School of Advanced Manufacturing, Fuzhou University, Quanzhou36225, China
  • 2Fujian Science and Technology Innovation Laboratory for Photoelectric Information, Fuzhou350116, China
  • 3College of Physics and Information Engineering, Fuzhou University, Fuzhou50116, China
  • show less
    Figures & Tables(13)
    Overall structure of the network model
    Structure of SPPF_Global module
    Schematic of the structure of DDA module.
    Structure of PDS module
    Schematic of CIoU and PIoU Parameters
    Training curve
    Visualization results of different models in complex environments
    Visualization results of different models with small targets
    • Table 1. Comparison of performance of different spatial pyramid pooling modules

      View table
      View in Article

      Table 1. Comparison of performance of different spatial pyramid pooling modules

      ModulePrecisionRecallmAP50mAP50-95Parameters/MFLOPs/BLatency/ms
      SPP78.3%77.2%83.2%62.2%3.018.10.89
      SPPF81.0%78.7%84.6%63.2%3.018.10.88
      ASPP81.5%77.4%84.5%63.2%3.838.70.91
      RFB81.1%77.0%84.0%62.8%3.188.20.89
      SPPCSPC81.3%78.1%84.2%63.1%4.629.40.97
      SimCSPSPPF81.0%78.1%84.9%63.4%3.368.40.90
      SPPF_Global82.2%78.5%85.6%64.0%3.068.00.88
    • Table 2. Comparison of performance of different attention mechanisms

      View table
      View in Article

      Table 2. Comparison of performance of different attention mechanisms

      ModelPrecisionRecallmAP50mAP50-95Parameters/MFLOPs/BLatency/ms
      YOLOv8n81.0%78.7%84.6%63.2%3.018.10.88
      +CBAM80.7%79.0%84.6%63.1%3.088.20.89
      +CA81.0%78.4%84.8%63.6%3.028.10.95
      +CPCA81.5%78.8%85.0%63.6%3.148.31.21
      +DLKA82.4%78.9%86.0%64.2%4.649.40.90
      +EMA81.9%76.5%84.6%63.3%3.028.20.90
      +LSKA80.6%78.0%84.8%63.5%3.088.20.89
      +SA80.6%77.7%84.8%63.4%3.018.10.89
      +SimAM82.7%77.3%85.1%63.6%3.018.10.89
      +TA80.4%79.1%85.1%63.7%3.018.10.90
      +DDA81.7%79.5%85.9%64.1%3.018.00.88
    • Table 3. Ablation experiments

      View table
      View in Article

      Table 3. Ablation experiments

      SPPF_

      Global

      DDAPDSPIoUPrecisionRecall

      mAP

      50

      mAP

      50-95

      Parameters

      /M

      FLOPs

      /B

      Latency

      /ms

      ××××81.0%78.7%84.6%63.2%3.018.10.88
      ×××82.2%78.5%85.6%64.0%3.068.00.88
      ×××81.7%79.5%85.9%64.1%3.018.10.88
      ×××83.1%78.5%86.0%64.6%2.747.81.04
      ××82.6%79.7%86.5%64.6%3.068.00.89
      ×82.7%80.8%87.0%65.6%2.817.81.06
      84.3%81.3%87.8%65.8%2.817.81.06
    • Table 4. Comparative experiments on MAR20 dataset

      View table
      View in Article

      Table 4. Comparative experiments on MAR20 dataset

      ModelPrecisionRecallmAP50mAP50-95Parameters/MFLOPs/BLatency/ms
      Faster R-CNN66.1%61.1%80.9%58.7%41.7591.238.74
      RT-DETR87.7%83.4%83.0%61.9%19.957.04.34
      Gold-YOLO-n78.2%75.7%81.8%59.8%5.6112.071.35
      YOLOv5n80.6%75.4%81.9%59.6%1.794.20.72
      YOLOv5s82.6%79.5%85.9%63.5%7.0615.91.53
      YOLOv6n79.7%74.3%81.9%59.4%4.6311.350.99
      YOLOv7-tiny79.9%75.5%82.5%59.5%6.0613.20.85
      YOLOv8n81.0%78.7%84.6%63.2%3.018.10.88
      Ours84.3%81.3%87.8%65.8%2.817.81.06
    • Table 5. Comparative experiments on NWPU VHR-10 dataset

      View table
      View in Article

      Table 5. Comparative experiments on NWPU VHR-10 dataset

      ModelPrecisionRecallmAP50mAP50-95Parameters/MFLOPs/BLatency/ms
      RT-DETR87.6%86.3%88.9%56.1%19.8857.04.34
      Gold-YOLO89.9%79.0%86.0%48.2%5.6112.062.07
      YOLOv5n90.2%78.6%86.1%46.8%1.774.21.20
      YOLOv5s92.5%85.3%89.6%51.6%7.0415.81.79
      YOLOv6n85.2%80.9%85.6%47.7%4.6311.341.55
      YOLOv7-tiny87.2%87.0%89.4%49.5%6.0313.12.29
      YOLOv8n86.1%82.1%87.7%54.1%3.018.10.87
      Ours91.1%87.2%90.2%54.4%2.807.81.05
    Tools

    Get Citation

    Copy Citation Text

    Shanling LIN, Xue ZHANG, Yan CHEN, Jianpu LIN, Shanhong LÜ, Zhixian LIN, Tailiang GUO. Integrating global information and dual-domain attention mechanism for optical remote sensing aircraft target detection[J]. Optics and Precision Engineering, 2024, 32(20): 3085

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 22, 2024

    Accepted: --

    Published Online: Jan. 10, 2025

    The Author Email: Jianpu LIN (ljp@fzu.edu.cn)

    DOI:10.37188/OPE.20243220.3085

    Topics