Optics and Precision Engineering, Volume. 32, Issue 2, 221(2024)
PET/CT Cross-modal medical image fusion of lung tumors based on DCIF-GAN
[1] Y LI, J L ZHAO, Z H LV et al. Medical image fusion method by deep learning. International Journal of Cognitive Computing in Engineering, 2, 21-29(2021).
[2] L F WANG, J ZHANG, Y LIU et al. Multimodal medical image fusion based on Gabor representation combination of multi-CNN and fuzzy neural network. IEEE Access, 9, 67634-67647(2021).
[3] Y D ZHANG, Z C DONG, S H WANG et al. Advances in multimodal data fusion in neuroimaging: overview, challenges, and novel orientation. Information Fusion, 64, 149-187(2020).
[4] S POLINATI, R DHULI. Multimodal medical image fusion using empirical wavelet decomposition and local energy maxima. Optik, 205, 163947(2020).
[5] J Z ZHANG, Z ZHOU, J H TENG et al. Fusion algorithm of functional images and anatomical images based on wavelet transform, 1-5(2009).
[6] X C LIANG, P Y HU, L G ZHANG et al. MCFNet: multi-layer concatenation fusion network for medical images fusion. IEEE Sensors Journal, 19, 7107-7119(2019).
[7] W D ZHAO, H M LU, D WANG. Multisensor image fusion and enhancement in spectral total variation domain. IEEE Transactions on Multimedia, 20, 866-879(2018).
[8] M Y LIANG, Z Y REN, J M YANG et al. Identification of colon cancer using multi-scale feature fusion convolutional neural network based on shearlet transform. IEEE Access, 8, 208969-208977(2020).
[9] I GOODFELLOW, J POUGET-ABADIE, M MIRZA et al. Generative adversarial networks. Communications of the ACM, 63, 139-144(2014).
[10] J Y MA, W YU, P W LIANG et al. FusionGAN: a generative adversarial network for infrared and visible image fusion. Information Fusion, 48, 11-26(2019).
[11] C YUAN, C Q SUN, X Y TANG et al. FLGC-fusion GAN: an enhanced fusion GAN model by importing fully learnable group convolution. Mathematical Problems in Engineering, 2020, 6384831(2020).
[12] J Y MA, P W LIANG, W YU et al. Infrared and visible image fusion via detail preserving adversarial learning. Information Fusion, 54, 85-98(2020).
[13] J LI, H T HUO, K J LIU et al. Infrared and visible image fusion using dual discriminators generative adversarial networks with Wasserstein distance. Information Sciences, 529, 28-41(2020).
[14] J Y MA, H XU, J J JIANG et al. DDcGAN: a dual-discriminator conditional generative adversarial network for multi-resolution image fusion. IEEE Transactions on Image Processing, 4980-4995(2020).
[15] S YI, J J LI, X S YUAN. DFPGAN: dual fusion path generative adversarial network for infrared and visible image fusion. Infrared Physics and Technology, 119, 103947(2021).
[16] J HUANG, Z L LE, Y MA et al. MGMDcGAN: medical image fusion using multi-generator multi-discriminator conditional generative adversarial network. IEEE Access, 8, 55145-55157(2016).
[17] Q L LI, L LU, Z LI et al. Coupled GAN with relativistic discriminators for infrared and visible images fusion. IEEE Sensors Journal, 21, 7458-7467(2021).
[20] A VASWANI, N SHAZEER, N PARMAR et al. Attention is all you need, 30(2017).
[21] Z LIU, Y T LIN, Y CAO et al. Swin transformer: hierarchical vision transformer using shifted windows, 10, 10012-10022(2021).
Get Citation
Copy Citation Text
Tao ZHOU, Qianru CHENG, Xiangxiang ZHANG, Qi LI, Huiling LU. PET/CT Cross-modal medical image fusion of lung tumors based on DCIF-GAN[J]. Optics and Precision Engineering, 2024, 32(2): 221
Category:
Received: Aug. 2, 2023
Accepted: --
Published Online: Apr. 2, 2024
The Author Email: CHENG Qianru (chengqianru5@163. com)