Optics and Precision Engineering, Volume. 32, Issue 2, 221(2024)

PET/CT Cross-modal medical image fusion of lung tumors based on DCIF-GAN

Tao ZHOU1,3, Qianru CHENG1,3、*, Xiangxiang ZHANG1,3, Qi LI1,3, and Huiling LU2
Author Affiliations
  • 1School of Computer Science and Engineering, North Minzu University, Yinchuan75002, China
  • 2School of Medical Information and Engineering, Ningxia Medical University, Yinchuan750004, China
  • 3Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission, North Minzu University, Yinchuan750021, China
  • show less
    Figures & Tables(12)
    Dual-coupled interactive fusion GAN overall network architecture
    The generator network structure
    Feature extraction module
    Diagram of sliding window mechanism in Swin Transformer
    Cross Modal Interactive Fusion Module
    Discriminator network structure
    Contrast experiment 1 qualitative comparison
    Contrast experiment 2 qualitative comparison
    Qualitative comparison of ablation experiments
    • Table 1. Comparison experiment 1 fusion image index evaluation results

      View table
      View in Article

      Table 1. Comparison experiment 1 fusion image index evaluation results

      图像组方法AGSFSSIMSDMIPSNRIEQAB/F
      1Fusion GAN2.0036.970.49726.81.48210.0324.875 20.109 3
      DDcGAN7.47721.320.58733.111.43210.2516.663 50.347 6
      MGMDcGAN5.18414.880.60129.882.14510.3386.258 50.285 3
      LatLRR+NSCT8.07123.270.60045.481.51210.3317.328 70.548 2
      OURS8.70623.370.60859.041.89710.4227.395 00.497 3
      2Fusion GAN1.786.20.53528.241.35410.1335.120 00.105 9
      DDcGAN6.86620.080.62235.081.44110.6226.625 30.338 0
      MGMDcGAN4.74814.340.63031.531.9510.6576.163 20.276 4
      LatLRR+NSCT7.320 022.020 00.53146.031.38610.6447.306 20.531 8
      OURS8.11322.30.69862.811.86111.3637.482 40.486 8
      3Fusion GAN2.8939.860.42937.081.738.8395.681 10.127 4
      DDcGAN7.08721.740.49935.562.5148.9066.155 30.336 3
      MGMDcGAN4.98515.770.49232.032.9259.0065.830 80.285 0
      LatLRR+NSCT8.30523.40.49246.682.1048.9407.113 00.559 6
      OURS8.38823.990.57466.752.0299.7407.502 80.526 4
      4Fusion GAN1.8936.290.51725.131.42810.2865.120 80.096 6
      DDcGAN7.8422.120.59036.611.71110.3226.886 50.338 3
      MGMDcGAN5.56515.630.60132.842.07110.4196.529 60.291 1
      LatLRR+NSCT8.66823.430.60450.141.54810.4257.474 50.563 2
      OURS9.07123.940.66662.781.82810.5157.638 30.496 7
      5Fusion GAN2.0346.690.50029.191.3249.5775.262 40.084 0
      DDcGAN8.01921.690.55836.911.9949.7786.996 90.343 5
      MGMDcGAN5.53415.190.57133.212.3189.8826.607 60.274 9
      LatLRR+NSCT8.7624.330.57350.231.7479.8617.547 20.583 4
      OURS9.32924.610.58063.851.9239.9497.567 90.506 4
    • Table 2. Comparison experiment 2 fusion image index evaluation results

      View table
      View in Article

      Table 2. Comparison experiment 2 fusion image index evaluation results

      图像组方法AGSFSSIMSDMIPSNRIEQAB/F
      1Fusion GAN4.87714.560.30332.421.7368.2345.982 80.120 7
      DDcGAN10.89725.580.38127.481.6118.3766.471 30.289 5
      MGMDcGAN7.44017.340.38423.630.757 18.4896.232 10.253 1
      LatLRR+NSCT13.58230.490.38438.871.5248.4697.491 30.551 9
      OURS13.61930.850.39152.812.058.5227.752 60.518 0
      2Fusion GAN4.66514.960.33335.462.4418.126.012 80.200 9
      DDcGAN7.52222.760.40330.272.3228.1556.185 30.314 2
      MGMDcGAN5.08215.640.38827.270.549 58.2555.976 20.269 0
      LatLRR+NSCT8.23524.450.40740.272.1248.1737.049 10.550 3
      OURS8.32224.550.40752.682.9148.2667.387 50.488 8
      3Fusion GAN4.21513.080.27931.191.8117.7145.469 30.120 2
      DDcGAN9.93326.190.36727.531.8427.7555.681 70.290 6
      MGMDcGAN6.90918.320.3622.90.703 47.8595.457 90.245 5
      LatLRR+NSCT11.85831.090.38235.890 01.2477.7726.901 10.510 3
      OURS12.23131.140.38344.552.2167.8737.276 70.461 8
      4Fusion GAN4.29113.720.28630.41.6767.7525.375 90.121 4
      DDcGAN9.78325.470.37426.241.6567.8525.626 80.276
      MGMDcGAN6.91318.110.36721.90.728 97.9545.420 00.243 6
      LatLRR+NSCT12.23431.780.39434.821.1547.864 06.925 40.512 1
      OURS12.4231.250.39646.62.0067.9617.291 50.468 8
      5Fusion GAN5.01516.280.31736.792.2177.4955.473 60.164 7
      DDcGAN8.25324.190.37533.532.4177.6375.520.298 1
      MGMDcGAN5.37216.150.36629.670.610 877.7375.322 20.239 7
      LatLRR+NSCT9.32427.060.3843.610 01.8587.6716.736 80.533 6
      OURS9.40427.140.38255.232.5997.7477.022 10.478 8
    • Table 3. Evaluation index of ablation experimental results.

      View table
      View in Article

      Table 3. Evaluation index of ablation experimental results.

      图像组方法AGSFSSIMSDMIPSNRIEQAB/F
      1Network18.15923.340.35239.142.5257.6134.943 40.294 7
      Network25.95120.040.35438.942.5377.6024.721 90.248 4
      Network37.89924.990.34654.42.6097.674 05.518 40.432 4
      Network49.36627.180.35557.042.617.7996.505 60.473 2
      2Network17.84524.420.31233.172.1357.2844.619 90.302 4
      Network25.64419.730.31532.562.2197.2784.528 00.238 6
      Network37.36925.960.32847.132.6177.4945.260 30.367 3
      Network48.61526.000.33352.532.9717.5236.454 70.460 3
      3Network18.97426.40.30933.112.6477.2784.802 80.320 3
      Network25.74220.270.30631.262.7667.2734.536 40.215 1
      Network38.23327.250.31545.132.9047.4445.357 20.452 8
      Network410.24730.110.32347.402.9967.5046.332 00.484 0
      4Network17.26620.40.56738.991.44710.0746.656 40.363 1
      Network26.05219.260.56440.671.61710.0596.443 90.339 9
      Network37.58122.100.57956.841.80110.2536.867 10.463 1
      Network48.02422.160.56859.041.89710.3026.867 30.485 0
      5Network16.62319.420.58743.871.82610.3976.382 40.338 6
      Network25.920.380.58449.221.96610.3186.147 70.334 0
      Network36.60621.210.60364.772.0810.4356.232 50.393 7
      Network47.20921.690.60865.432.13610.7666.711 20.457 2
    Tools

    Get Citation

    Copy Citation Text

    Tao ZHOU, Qianru CHENG, Xiangxiang ZHANG, Qi LI, Huiling LU. PET/CT Cross-modal medical image fusion of lung tumors based on DCIF-GAN[J]. Optics and Precision Engineering, 2024, 32(2): 221

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 2, 2023

    Accepted: --

    Published Online: Apr. 2, 2024

    The Author Email: CHENG Qianru (chengqianru5@163. com)

    DOI:10.37188/OPE.20243202.0221

    Topics