Acta Optica Sinica, Volume. 43, Issue 24, 2430001(2023)

Broadband Cavity-Enhanced Atmospheric Nitrogen Dioxide Detection Technology Based on High-Precision Proportional Integral Derivative Temperature Control

Xinyu Xu1,2, Jiacheng Zhou2、*, Zheng Liu2, Qunting Yang2, Xuezhe Xu2, Weixiong Zhao2, and Weijun Zhang1,2
Author Affiliations
  • 1School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, Anhui , China
  • 2Anhui Institute of Optics and Fine Mechanics, Hefei Institute of Materials Science, Chinese Academy of Sciences, Hefei 230031, Anhui , China
  • show less
    References(30)

    [1] Pakkattil A, Saseendran A, Thomas A P et al. A dual-channel incoherent broadband cavity-enhanced absorption spectrometer for sensitive atmospheric NOx measurements[J]. The Analyst, 146, 2542-2549(2021).

    [2] Jordan N, Osthoff H D. Quantification of nitrous acid (HONO) and nitrogen dioxide (NO2) in ambient air by broadband cavity-enhanced absorption spectroscopy (IBBCEAS) between 361 and 388 nm[J]. Atmospheric Measurement Techniques, 13, 273-285(2020).

    [3] Ryerson T B, Williams E J, Fehsenfeld F C. An efficient photolysis system for fast-response NO2 measurements[J]. Journal of Geophysical Research: Atmospheres, 105, 26447-26461(2000).

    [4] Matsumoto J, Hirokawa J, Akimoto H et al. Direct measurement of NO2 in the marine atmosphere by laser-induced fluorescence technique[J]. Atmospheric Environment, 35, 2803-2814(2001).

    [5] Pang X, Lewis A C, Rickard A R et al. A smog chamber comparison of a microfluidic derivatisation measurement of gas-phase glyoxal and methylglyoxal with other analytical techniques[J]. Atmospheric Measurement Techniques, 7, 373-389(2014).

    [6] Stutz J, Platt U. Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods[J]. Applied Optics, 35, 6041-6053(1996).

    [7] Stacewicz T, Wojtas J, Bielecki Z et al. Cavity ring down spectroscopy: detection of trace amounts of substance[J]. Opto-Electronics Review, 20, 53-60(2012).

    [8] Zhao W X, Dong M L, Chen W D et al. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm[J]. Analytical Chemistry, 85, 2260-2268(2013).

    [9] Fiedler S E, Hese A, Ruth A A. Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids[J]. Review of Scientific Instruments, 76, 023107(2005).

    [10] Langridge J M, Ball S M, Jones R L. A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes[J]. The Analyst, 131, 916-922(2006).

    [11] Jordan N, Osthoff H D. Quantification of nitrous acid (HONO) and nitrogen dioxide (NO2) in ambient air by broadband cavity-enhanced absorption spectroscopy (IBBCEAS) between 361 and 388 nm[J]. Atmospheric Measurement Techniques, 13, 273-285(2020).

    [12] Liang S X, Qin M, Duan J et al. Airborne cavity enhanced absorption spectroscopy for high time resolution measurements of atmospheric NO2[J]. Acta Physica Sinica, 66, 090704(2017).

    [13] Liu J W, Li X, Yang Y M et al. An IBBCEAS system for atmospheric measurements of glyoxal and methylglyoxal in the presence of high NO2 concentrations[J]. Atmospheric Measurement Techniques, 12, 4439-4453(2019).

    [14] Dong M L, Xu X Z, Zhao W X et al. High-sensitive trace detection of NO2 with broadband cavity-enhanced spectroscopy[J]. Journal of Applied Optics, 35, 264-269(2014).

    [15] Fang B, Zhao W X, Xu X Z et al. Portable broadband cavity-enhanced spectrometer utilizing Kalman filtering: application to real-time, in situ monitoring of glyoxal and nitrogen dioxide[J]. Optics Express, 25, 26910-26922(2017).

    [16] Zhou J C, Zhao W X, Zhang Y et al. Amplitude-modulated cavity-enhanced absorption spectroscopy with phase-sensitive detection: a new approach applied to the fast and sensitive detection of NO2[J]. Analytical Chemistry, 94, 3368-3375(2022).

    [17] Ling L Y, Xie P H, Qin M et al. Realization of thermostatic control of LED as light source for differential optical absorption spectroscopy measurements[J]. Journal of Atmospheric and Environmental Optics, 8, 60-65(2013).

    [18] García-Botella A, Fernández-Balbuena A A, Vázquez-Moliní D et al. Thermal influences on optical properties of light-emitting diodes: a semiempirical model[J]. Applied Optics, 40, 533-537(2001).

    [19] Zou L, Sun Y Q, Sun Q. A simulation study of PID control based on Kalman filter[J]. Control & Automation, 23, 79-81, 157(2007).

    [20] Xiong L, Chen X Q, Xie H et al. Realization and application of PID control based on Kalman filtering in PLC[J]. Modern Electronics Technique, 45, 5-8(2022).

    [21] Ouyang X C, Yang B W, Wan J Y et al. Self-adaptive laser power stabilization system based on fuzzy control[J]. Chinese Journal of Lasers, 48, 0101003(2021).

    [22] Gao J X, Song Y G, Liu Y. Application of nonlinear PID active disturbance rejection control in the temperature control system of fast steering mirror[J]. Laser & Optoelectronics Progress, 60, 0523001(2023).

    [23] Wu L Y, Gao G Z, Liu X et al. Study on the calibration of reflectivity of the cavity mirrors used in cavity enhanced absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 41, 2945-2949(2021).

    [24] Thalman R, Zarzana K J, Tolbert M A et al. Rayleigh scattering cross-section measurements of nitrogen, argon, oxygen and air[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 147, 171-177(2014).

    [25] Ling L Y, Lin P P, Huang Y R et al. A long-path DOAS system using LED with stabilized spectrum as optical source for measuring atmospheric NO2[J]. Journal of Optoelectronics·Laser, 26, 1712-1718(2015).

    [26] Zhang H L, Qin M, Fang W et al. Quantification of iodine monoxide based on incoherent broadband cavity enhanced absorption spectroscopy[J]. Acta Physica Sinica, 70, 150702(2021).

    [27] Ouyang B, Jones R L. Understanding the sensitivity of cavity-enhanced absorption spectroscopy: pathlength enhancement versus noise suppression[J]. Applied Physics B, 109, 581-591(2012).

    [28] Friedrich N, Tadic I, Schuladen J et al. Measurement of NOx and NOy with a thermal dissociation cavity ring-down spectrometer (TD-CRDS): instrument characterisation and first deployment[J]. Atmospheric Measurement Techniques, 13, 5739-5761(2020).

    [29] Kuang C L, Zeng L M, Chen S Y et al. The design and application of an online nitrogen dioxide analyzer based on cavity attenuated phase shift spectroscopy[J]. Acta Scientiae Circumstantiae, 40, 2970-2976(2020).

    [30] Tang K, Qin M, Fang W et al. Simultaneous detection of atmospheric HONO and NO2 utilising an IBBCEAS system based on an iterative algorithm[J]. Atmospheric Measurement Techniques, 13, 6487-6499(2020).

    Tools

    Get Citation

    Copy Citation Text

    Xinyu Xu, Jiacheng Zhou, Zheng Liu, Qunting Yang, Xuezhe Xu, Weixiong Zhao, Weijun Zhang. Broadband Cavity-Enhanced Atmospheric Nitrogen Dioxide Detection Technology Based on High-Precision Proportional Integral Derivative Temperature Control[J]. Acta Optica Sinica, 2023, 43(24): 2430001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Spectroscopy

    Received: Feb. 6, 2023

    Accepted: Mar. 22, 2023

    Published Online: Dec. 12, 2023

    The Author Email: Zhou Jiacheng (zhoujch@aiofm.ac.cn)

    DOI:10.3788/AOS230511

    Topics