Journal of Inorganic Materials, Volume. 39, Issue 1, 17(2024)

Progress of Interconnect Materials in the Third-generation Semiconductor and Their Low-temperature Sintering of Copper Nanoparticles

Xin KE1,2, Bingqing XIE1,2, Zhong WANG1,3、*, Jingguo ZHANG1,3,4, Jianwei WANG1,3, Zhanrong LI1,3,4, Huijun HE1,3, and Limin WANG1,3
Author Affiliations
  • 11. Metal Powder Materials Industrial Technology Research Institute of CHINA GRINM, Beijing 101407, China
  • 22. General Research Institute for Nonferrous Metals, Beijing 100088, China
  • 33. GRIPM Advanced Materials Co. Ltd., Beijing 101407, China
  • 44. Gricy Advanced Materials Co., Ltd., Chongqing 401431, China
  • show less
    Figures & Tables(18)
    Global GDP and semiconductor market size in 2014-2020[7]
    Third-generation semiconductor applications
    Package interconnection structure of typical power semiconductor module[14]
    Applied temperature range and application possibilities of different package interconnect materials[22]
    Virtual equilibrium phase diagram for TLP bonding[32]
    Schematic diagram of TLP bonding principle[33]
    Cu@Ag nanoparticles and performance characterization[85]
    Structures of micro-nano copper particles mixed with different particle sizes[90]
    Schematic diagram of sintering of bimodal copper slurry under different atmospheres[93]
    Schematic diagram of oxidation effect of surface layer of copper nanoparticles on the sintering performance[94]
    Mechanism of promotion in copper slurry by ascorbic acid (AA)[96]
    Schematic diagram of reduction and sintering mechanism of Cu NP paste[98]
    SEM images of cross sections of sintered specimens at different temperatures[102]
    Resistivities of the bonding layer at different sintering temperatures[103]
    Schematic diagram of the preparation process of Cu-Cu connection joints[104]
    • Table 1. Comparison on performance parameters of the main semiconductor material [10]

      View table
      View in Article

      Table 1. Comparison on performance parameters of the main semiconductor material [10]

      ParameterSiGaAsSiCGaNDiamond
      Band gap/eV1.121.433.263.455.45
      Dielectric constant11.913.110.195.5
      Breakdown field/(kV·cm-1)3004002200200010000
      Electron mobility/(cm2·V-1·s-1)15008500100012502200
      Hole mobility/(cm2·V-1·s-1600400115850850
      Thermal conductivity/(W·cm-1·K-1)1.50.464.91.322
      Electron saturation drift velocity/(×107, cm·s-1)1122.22.7
    • Table 2. Various TLP bonding materials and their properties[60]

      View table
      View in Article

      Table 2. Various TLP bonding materials and their properties[60]

      MaterialTemperature/℃Relative market price*Relative performance
      BondingIMCThermal conductivityElectrical conductivity
      Cu-Sn280415(Cu6Sn5)Cu: 0.5Cu: 4.4Cu: 4.1
      676(Cu3Sn)Sn: 0.8
      Ni-Sn300800(Ni3Sn3)Ni: 1Ni: 1Ni: 1
      Sn: 0.8
      Au-Sn250419(AuSn)Au: 2600Au: 3.5Au: 3.1
      Sn: 0.8
      Ag-Sn250480(Ag3Sn)Ag: 63Ag: 4.7Ag: 4.4
      Sn: 0.8
      Ag-In200495Ag: 63Ag: 4.7Ag: 4.7
      In: 37.5
      Au-In175880Au: 2600Au: 3.1Au: 3.1
      In: 37.5
    • Table 3. Comparison of various low-temperature sintering processes and their performance

      View table
      View in Article

      Table 3. Comparison of various low-temperature sintering processes and their performance

      Particle sizeAppearanceSintering processElectrical conductivity/(μΩ·cm) Shearing performance/MPa Ref.
      10 and 1000 nm particle compoundIrregularAr, 250 ℃, 2 MPa, 15 min5.4445.6[90]
      200 nm, 1000 nmSphericalN2, 350 ℃, 0.4 MPa-40[91]
      530 nmIrregular97% N2-3% H2, 300 ℃, 30 min-23[92]
      60-100 nmAngularN2, 200 ℃, 60 min18-[93]
      Thick 200 nm, length 3-5 μmSphericalN2, 275 ℃, 10 MPa, 30 min-50[95]
      30-400 nmAngularN2, 300 ℃, 0.4 MPa, 30 min-24.8[96]
      6.5 nmSphericalAr, 250 ℃, 5 MPa, 30 min-36.2[97]
      100 nmSphericalAir, 225 ℃, 8 MPa, 10 min59±728.7±1.6[98]
      500 nmAngularHCOOH, 275 ℃, 5 MPa, 30 min-70[102]
      60.5 nmSpherical95% Ar-5% H2, 300 ℃, 1.08 MPa, 60 min11.231.88[103]
      30 nmSpherical95% N2-5% H2, 320 ℃, 10 MPa, 5 min3.1651.7[104]
      54-64 nmSphere-likeH2, 400 ℃, 1.2 MPa, 5 min-37.7[106]
      5 nmSphere-like95% Ar-5% H2, 250 ℃, 1.08 MPa, 60 min4.125.36[107]
      400-1200 nmSphere-likeAir, 200 ℃, 50 s54±2-[108]
      300-400 nmSphere-likeN2, 200 ℃, 30 min139±24-[109]
      1-3 μmSphere-likeAir, 180 ℃, 5 min30-[110]
      200 nmSphericalAir, 300 ℃, 2 MPa, 1 min-21.8[111]
      50 nmSphericalAir, 220 ℃, 5 min-30[112]
      10 nmSphericalN2, 200 ℃, 30 min14.0±4.5-[113]
      6.5 nmSphericalAir, 175 ℃, 2 MPa, 10 min-35.1[114]
      60 nmSphere-like95% Ar-5% H2, 250 ℃, 10 MPa, 60 min-32.4[115]
      4.4 nmAngularN2, 150 ℃, 30 min52-[116]
      Tens to hundreds of nanometersIrregularVacuum, 300 ℃, 0.4 MPa,30 min-20[117]
      <10 nmAngularAr, 250 ℃, 3 MPa, 30 min5.1-[118]
    Tools

    Get Citation

    Copy Citation Text

    Xin KE, Bingqing XIE, Zhong WANG, Jingguo ZHANG, Jianwei WANG, Zhanrong LI, Huijun HE, Limin WANG. Progress of Interconnect Materials in the Third-generation Semiconductor and Their Low-temperature Sintering of Copper Nanoparticles[J]. Journal of Inorganic Materials, 2024, 39(1): 17

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 1, 2023

    Accepted: --

    Published Online: Mar. 28, 2024

    The Author Email: WANG Zhong (wzwz99@126.com)

    DOI:10.15541/jim20230345

    Topics