Journal of Applied Optics, Volume. 44, Issue 2, 330(2023)
Point cloud registration algorithm based on 3D shape context features
[2] [2] TAMAKI T, ABE M, RAYTCHEV B, et al. Softassign and EM-ICP on GPU[C]. Proceedings of International Conference on Net working And Computing. USA: IEEE, 2010: 179-183.
[3] [3] CHETVERIKOV D, SVIRKO D, STEPANOV D, et al. The trimmed iterative closest point algorithm[C]. IEEE International Conference on Pattern Recogniton. USA: IEEE, 2002: 13-17.
[4] [4] MAGNUSSON M, LILIENTHAL, A. J, DUCKETT T. Scan registration for autonomous mining vehicles using 3D-NDT[J]. Field Robot, 2007, 24(2): 803–827.
[6] [6] HAN Yifei, YANG Zi, QIAN Zhengfu, et al, Improved point cloud registration algorithm based on fpfh and normal vector[J]. Semiconductor Optoelectronics, 2021, 42(4): 579-584.
[9] [9] YU Z. Intrinsic shape signatures: a shape descriptor for 3D object recognition[C]//Proceedings of the 12th IEEE International Conference on Computer Vision Workshops(ICCV Workshops). Kyoto: IEEE, 2009: 689-696.
[12] [12] TOMBARI F, SALTI S, STEFANO L. Unique shape context for 3D data description[C]. Proceedings of the ACM workshop on 3D object retrieval. [S. l. ]: ACM, 2010: 57-62.
Get Citation
Copy Citation Text
Zixiang ZHOU, Dandan HUANG, Zhi LIU. Point cloud registration algorithm based on 3D shape context features[J]. Journal of Applied Optics, 2023, 44(2): 330
Category: Research Articles
Received: May. 9, 2022
Accepted: --
Published Online: Apr. 14, 2023
The Author Email: HUANG Dandan (hdd@cust.edu.cn)