Journal of Applied Optics, Volume. 44, Issue 2, 330(2023)

Point cloud registration algorithm based on 3D shape context features

Zixiang ZHOU1... Dandan HUANG1,* and Zhi LIU2 |Show fewer author(s)
Author Affiliations
  • 1School of Electronical and Information Engineering, Changchun University of Science and Technology, Changchun 130000, China
  • 2Institute of Space Optoelectronics Technology, Changchun University of Science and Technology, Changchun 130000, China
  • show less
    Figures & Tables(16)
    Flow chart of proposed algorithm
    Comparison of point cloud before and after voxel filtering
    Comparison results of three commonly-used point cloud feature extraction methods
    Diagram of feature space division of 3DSC
    Matching results of bunny
    Matching results of fr1_desk
    Matching results of fr2_desk
    Matching results of fr2_xyz
    • Table 1. The number of feature points extracted by different methods

      View table
      View in Article

      Table 1. The number of feature points extracted by different methods

      特征点提取方法特征点数时间/s
      ISS算法660.403
      3D-harris算法350.692
      3D-sift算法521.265
    • Table 2. The number of feature points extracted by ISS algorithm under different search radii

      View table
      View in Article

      Table 2. The number of feature points extracted by ISS algorithm under different search radii

      搜索半径/m0.030.040.050.060.07
      源点云1159591444388363
      目标点云1381707582509486
    • Table 3. Other main parameters of proposed algorithm

      View table
      View in Article

      Table 3. Other main parameters of proposed algorithm

      参数数值
      ISS L2/L1的阈值0.65
      ISS L3/L2的阈值0.5
      3DSC球面最小半径/m0.02
      3DSC领域点半径/m0.1
      3DSC密度计算阈值0.02
    • Table 4. Number of point clouds and matching of feature points

      View table
      View in Article

      Table 4. Number of point clouds and matching of feature points

      数据集点云原始数量下采样后的点云数量特征点个数粗匹配前的匹配点对粗匹配后的匹配点对匹配成功率/%
      bunny348342996219141285.7
      348252918721
      fr1_desk189053158565444726286.1
      186134156961582
      fr2_desk159187135065119161487.5
      146533124076147
      fr2_xyz10115811601741060413585.3
      10752882373011381
    • Table 5. Evaluation of registration effect of bunny

      View table
      View in Article

      Table 5. Evaluation of registration effect of bunny

      配准方法时间/s均方根误差/m
      本文算法0.0414.70×10−7
      SAC-IA+ICP算法1.0237.09×10−4
      ISS+3DSC+ndt算法0.0945.46×10−5
    • Table 6. Evaluation of registration effect of fr1_desk

      View table
      View in Article

      Table 6. Evaluation of registration effect of fr1_desk

      配准方法时间/s均方根误差/m
      本文算法0.2292.00×10−4
      SAC-IA+ICP算法11.4034.54×10−4
      ISS+3DSC+ndt算法0.2313.05×10−4
    • Table 7. Evaluation of registration effect of fr2_desk

      View table
      View in Article

      Table 7. Evaluation of registration effect of fr2_desk

      配准方法时间/s均方根误差/m
      本文算法0.0632.31×10−4
      SAC-IA+ICP算法8.2234.50×10−4
      ISS+3DSC+ndt算法0.0743.02×10−4
    • Table 8. Evaluation of registration effect of fr2_xyz

      View table
      View in Article

      Table 8. Evaluation of registration effect of fr2_xyz

      配准方法时间/s均方根误差/m
      本文算法2.8071.68×10−5
      SAC-IA+ICP算法14.9764.91×10−4
      ISS+3DSC+ndt算法2.8872.99×10−5
    Tools

    Get Citation

    Copy Citation Text

    Zixiang ZHOU, Dandan HUANG, Zhi LIU. Point cloud registration algorithm based on 3D shape context features[J]. Journal of Applied Optics, 2023, 44(2): 330

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: May. 9, 2022

    Accepted: --

    Published Online: Apr. 14, 2023

    The Author Email: HUANG Dandan (hdd@cust.edu.cn)

    DOI:10.5768/JAO202344.0202005

    Topics