Acta Optica Sinica, Volume. 42, Issue 17, 1701001(2022)

Spaceborne Environmental Detection Lidar and Its Key Techniques

Dong Liu1、*, Sijie Chen1, Qun Liu1,2, Ju Ke1, Nanchao Wang1, Yingshan Sun1, Shuaibo Wang1, Yatong Chen1, Weize Li1, Yuting Tao1, Chong Liu1, Lan Wu1, and Yudi Zhou1,2
Author Affiliations
  • 1College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • 2Ningbo Innovation Center, Zhejiang University, Ningbo 315100, Zhejiang, China
  • show less
    References(229)

    [1] Behrenfeld M J, Gaube P, Della Penna A et al. Global satellite-observed daily vertical migrations of ocean animals[J]. Nature, 576, 257-261(2019).

    [2] Ho J C, Michalak A M, Pahlevan N. Widespread global increase in intense lake phytoplankton blooms since the 1980s[J]. Nature, 574, 667-670(2019).

    [3] Osman M B, Das S B, Trusel L D et al. Industrial-era decline in subarctic Atlantic productivity[J]. Nature, 569, 551-555(2019).

    [4] Tang W Y, Llort J, Weis J et al. Widespread phytoplankton blooms triggered by 2019—2020 Australian wildfires[J]. Nature, 597, 370-375(2021).

    [5] Liu W Q. Opportunities and challenges for development of atmospheric environmental optics Monitoring Technique Under "Double Carbon" Goal[J]. Acta Optica Sinica, 42, 0600001(2022).

    [6] Behrenfeld M J. Climate-mediated dance of the plankton[J]. Nature Climate Change, 4, 880-887(2014).

    [7] Behrenfeld M J, O′Malley R T, Siegel D A et al. Climate-driven trends in contemporary ocean productivity[J]. Nature, 444, 752-755(2006).

    [8] Song J J. World′s first global wind spaceborne LiDAR launched successfully[J]. Space International, 40-43(2018).

    [9] Toll V, Christensen M, Quaas J et al. Weak average liquid-cloud-water response to anthropogenic aerosols[J]. Nature, 572, 51-55(2019).

    [10] Ramanathan V, Ramana M V, Roberts G et al. Warming trends in Asia amplified by brown cloud solar absorption[J]. Nature, 448, 575-578(2007).

    [11] Friedlingstein P, Jones M W, O′sullivan M et al. Global carbon budget 2021[J]. Earth System Science Data, 14, 1917-2005(2022).

    [12] le Quéré C, Andres R J, Boden T et al. The global carbon budget 1959—2011[J]. Earth System Science Data, 5, 165-185(2013).

    [13] Kim D, Ramanathan V. Solar radiation budget and radiative forcing due to aerosols and clouds[J]. Journal of Geophysical Research, 113, D02203(2008).

    [14] Wang Y, Wu C C. Current understanding of tropical cyclone structure and intensity changes: a review[J]. Meteorology and Atmospheric Physics, 87, 257-278(2004).

    [15] Hostetler C A, Behrenfeld M J, Hu Y X et al. Spaceborne lidar in the study of marine systems[J]. Annual Review of Marine Science, 10, 121-147(2018).

    [16] McClain C R. A decade of satellite ocean color observations[J]. Annual Review of Marine Science, 1, 19-42(2009).

    [17] Groom S, Sathyendranath S, Ban Y et al. Satellite Ocean colour: current status and future perspective[J]. Frontiers in Marine Science, 6, 485(2019).

    [18] Jamet C, Ibrahim A, Ahmad Z et al. Going beyond standard ocean color observations: lidar and polarimetry[J]. Frontiers in Marine Science, 6, 251(2019).

    [19] Gong W, Shi S, Chen B W et al. Development and application of airborne hyperspectral LiDAR imaging technology[J]. Acta Optica Sinica, 42, 1200002(2022).

    [20] Smith B, Fricker H A, Gardner A S et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes[J]. Science, 368, 1239-1242(2020).

    [21] Zwally H J, Schutz B, Abdalati W et al. ICESat′s laser measurements of polar ice, atmosphere, ocean, and land[J]. Journal of Geodynamics, 34, 405-445(2002).

    [22] Winker D M, Vaughan M A, Omar A et al. Overview of the CALIPSO mission and CALIOP data processing algorithms[J]. Journal of Atmospheric and Oceanic Technology, 26, 2310-2323(2009).

    [23] Getzewich B J, Vaughan M A, Lee K P et al. CALIPSO lidar calibration at 532 nm: version 4 daytime algorithm[J]. Atmospheric Measurement Techniques, 11, 6309-6326(2018).

    [24] Behrenfeld M J, Hu Y X, Hostetler C A et al. Space-based lidar measurements of global ocean carbon stocks[J]. Geophysical Research Letters, 40, 4355-4360(2013).

    [25] Behrenfeld M J, Hu Y X, O′Malley R T et al. Annual boom-bust cycles of polar phytoplankton biomass revealed by space-based lidar[J]. Nature Geoscience, 10, 118-122(2017).

    [27] Magruder L, Neumann T, Kurtz N. ICESat-2 early mission synopsis and observatory performance[J]. Earth and Space Science, 8, e2020EA001555(2021).

    [28] Palm S P, Yang Y K, Herzfeld U et al. ICESat-2 atmospheric channel description, data processing and first results[J]. Earth and Space Science, 8, e2020EA001470(2021).

    [29] Abdalati W, Zwally H J, Bindschadler R et al. The ICESat-2 laser altimetry mission[J]. Proceedings of the IEEE, 98, 735-751(2010).

    [30] Kim M H, Omar A H, Tackett J L et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm[J]. Atmospheric Measurement Techniques, 11, 6107-6135(2018).

    [31] Gelaro R, McCarty W, Suárez M J et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)[J]. Journal of Climate, 30, 5419-5454(2017).

    [32] Winker D M, Hunt W H, McGill M J. Initial performance assessment of CALIOP[J]. Geophysical Research Letters, 34, L19803(2007).

    [33] Vaughan M A, Young S A, Winker D M et al. Fully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products[J]. Proceedings of SPIE, 5575, 16-30(2004).

    [34] Storm M, Stevenson G, Hovis F et al. Lidar and laser technology for NASA′S cloud-aerosol transport system (CATS) payload on the international space station (JEM-EF)[J]. EPJ Web of Conferences, 119, 04002(2016).

    [35] McGill M J, Yorks J E, Scott V S et al. The Cloud-Aerosol Transport System (CATS): a technology demonstration on the International Space Station[J]. Proceedings of SPIE, 9612, 96120A(2015).

    [36] Kanitz T, Ciapponi A, Mondello A et al. ESA′s lidar missions Aeolus and EarthCARE[J]. EPJ Web of Conferences, 237, 01006(2020).

    [37] Paschou P, Proestakis E, Tsekeri A et al. The ESA-EVE polarization lidar for assessing the Aeolus aerosol product perfomance[J]. EPJ Web of Conferences, 237, 07025(2020).

    [38] Liu D, Zheng Z F, Chen W B et al. Performance estimation of space-borne high-spectral-resolution lidar for cloud and aerosol optical properties at 532 nm[J]. Optics Express, 27, A481-A494(2019).

    [39] Dong J F, Liu J Q, Zhu X L et al. Error analysis of spaceborne high spectral resolution lidar[C], 10846, 108461N(2019).

    [40] Illingworth A J, Barker H W, Beljaars A et al. The EarthCARE satellite: the next step forward in global measurements of clouds, aerosols, precipitation, and radiation[J]. Bulletin of the American Meteorological Society, 96, 1311-1332(2015).

    [42] Abshire J, Browell E, Menzies R et al[M]. An overview of NASA′s ASCENDS mission′s lidar measurement requirements(2014).

    [43] Ehret G, Bousquet P, Pierangelo C et al. MERLIN: a French-German space lidar mission dedicated to atmospheric methane[J]. Remote Sensing, 9, 1052(2017).

    [45] Lieber M, Weimer C, Stephens M et al. Development of a validated end-to-end model for space-based lidar systems[J]. Proceedings of SPIE, 6681, 66810F(2007).

    [46] Liu D, Liu Q, Bai J et al. Data processing algorithms of the space-borne lidar CALIOP: a review[J]. Infrared and Laser Engineering, 46, 1202001(2017).

    [47] Ehret G, Kiemle C, Wirth M et al. Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis[J]. Applied Physics B, 90, 593-608(2008).

    [48] Kawa S R, Mao J, Abshire J B et al. Simulation studies for a space-based CO2 lidar mission[J]. Tellus B: Chemical and Physical Meteorology, 62, 759-769(2010).

    [49] Chen P, Jamet C, Mao Z H et al. OLE: a novel oceanic lidar emulator[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 9730-9744(2021).

    [50] Liu Q, Cui X Y, Jamet C et al. A semianalytic Monte Carlo simulator for spaceborne oceanic lidar: framework and preliminary results[J]. Remote Sensing, 12, 2820(2020).

    [51] Filipitsch F, Buras R, Fuchs M. Model studies on the retrieval of aerosol properties beneath cirrus clouds for a spaceborne HSRL[C], 1531, 452-455(2013).

    [52] Yu X, Chen B L, Min M et al. Simulating return signals of a spaceborne high-spectral resolution lidar channel at 532 nm[J]. Optics Communications, 417, 89-96(2018).

    [53] Mao F Y, Luo X, Song J et al. Simulation and retrieval for spaceborne aerosol and cloud high spectral resolution lidar of China[J]. Scientia Sinica (Terrae), 52, 620-633(2022).

    [54] Wang Q, Bu L B, Tian L et al. Validation of an airborne high spectral resolution lidar and its measurement for aerosol optical properties over Qinhuangdao, China[J]. Optics Express, 28, 24471-24488(2020).

    [55] Cheng Z T, Liu D, Luo J et al. Effects of spectral discrimination in high-spectral-resolution lidar on the retrieval errors for atmospheric aerosol optical properties[J]. Applied Optics, 53, 4386-4397(2014).

    [56] Wang S B, Ke J, Chen S J et al. Performance evaluation of spaceborne integrated path differential absorption lidar for carbon dioxide detection at 1572 nm[J]. Remote Sensing, 12, 2570(2020).

    [57] Kiemle C, Kawa S R, Quatrevalet M et al. Performance simulations for a spaceborne methane lidar mission[J]. Journal of Geophysical Research: Atmospheres, 119, 4365-4379(2014).

    [58] Han G, Ma X, Liang A L et al. Performance evaluation for China′s planned CO2-IPDA[J]. Remote Sensing, 9, 768(2017).

    [59] Han G, Xu H, Gong W et al. Feasibility study on measuring atmospheric CO2 in urban areas using spaceborne CO2-IPDA LIDAR[J]. Remote Sensing, 10, 985(2018).

    [60] Lancaster R S, Spinhirne J D, Palm S P. Laser pulse reflectance of the ocean surface from the GLAS satellite lidar[J]. Geophysical Research Letters, 32, L22S10(2005).

    [61] Clough S A, Shephard M W, Mlawer E J et al. Atmospheric radiative transfer modeling: a summary of the AER codes[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 91, 233-244(2005).

    [62] Gordon I E, Rothman L S, Hargreaves R J et al. The HITRAN2020 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 277, 107949(2022).

    [63] Mao J P, Ramanathan A, Abshire J B et al. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar[J]. Atmospheric Measurement Techniques, 11, 127-140(2018).

    [65] Stoffelen A, Marseille G J, Bouttier F et al. ADM-Aeolus Doppler wind lidar observing system simulation experiment[J]. Quarterly Journal of the Royal Meteorological Society, 132, 1927-1947(2006).

    [66] Durand Y, Culoma A J F, Meynart R et al. Predevelopment of a direct detection Doppler wind lidar for ADM/AEOLUS mission[J]. Proceedings of SPIE, 5234, 354-363(2004).

    [67] Baron P, Ishii S, Okamoto K et al. Feasibility study for future spaceborne coherent Doppler wind lidar, part 2: measurement simulation algorithms and retrieval error characterization[J]. Journal of the Meteorological Society of Japan Ser II, 95, 319-342(2017).

    [68] Liu Y W, Sun X J, Zhang C L et al. Influence of molecular scattering on Mie channel of spaceborne wind lidar[J]. Laser & Infrared, 49, 156-164(2019).

    [69] Chu D A, Tsai T C, Chen J P et al. Interpreting aerosol lidar profiles to better estimate surface PM2.5 for columnar AOD measurements[J]. Atmospheric Environment, 79, 172-187(2013).

    [70] Dubovik O, Holben B, Eck T F et al. Variability of absorption and optical properties of key aerosol types observed in worldwide locations[J]. Journal of the Atmospheric Sciences, 59, 590-608(2002).

    [71] Cox C, Munk W. Measurement of the roughness of the sea surface from photographs of the sun′s glitter[J]. Journal of the Optical Society of America, 44, 838-850(1954).

    [72] Morel A. Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters)[J]. Journal of Geophysical Research, 93, 10749-10768(1988).

    [73] Uitz J, Claustre H, Morel A et al. Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll[J]. Journal of Geophysical Research, 111, C08005(2006).

    [74] Ibrahim A, Gilerson A, Chowdhary J et al. Retrieval of macro- and micro-physical properties of oceanic hydrosols from polarimetric observations[J]. Remote Sensing of Environment, 186, 548-566(2016).

    [75] Zhou Y D, Chen W B, Cui X Y et al. Validation of the analytical model of oceanic lidar returns: comparisons with Monte Carlo simulations and experimental results[J]. Remote Sensing, 11, 1870(2019).

    [76] Hogan R J. Fast lidar and radar multiple-scattering models. Part I: small-angle scattering using the photon variance-covariance method[J]. Journal of the Atmospheric Sciences, 65, 3621-3635(2008).

    [77] Liu Q, Cui X Y, Chen W B et al. A semianalytic Monte Carlo radiative transfer model for polarized oceanic lidar: experiment-based comparisons and multiple scattering effects analyses[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 237, 106638(2019).

    [78] Zhou Y D, Chen W B, Liu D et al. Multiple scattering effects on the return spectrum of oceanic high-spectral-resolution lidar[J]. Optics Express, 27, 30204-30216(2019).

    [79] Hu Y X, Winker D, Yang P et al. Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 70, 569-579(2001).

    [80] Liu D, Xu P T, Zhou Y D et al. Lidar remote sensing of seawater optical properties: experiment and Monte Carlo simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 9489-9498(2019).

    [81] Zhou Y D, Liu D, Xu P T et al. Detecting atmospheric-water optical property profiles with a polarized lidar[J]. Journal of Remote Sensing, 23, 108-115(2019).

    [82] Churnside J H. Review of profiling oceanographic lidar[J]. Optical Engineering, 53, 051405(2014).

    [83] Gordon H R. Interpretation of airborne oceanic lidar: effects of multiple scattering[J]. Applied Optics, 21, 2996-3001(1982).

    [84] Liu D, Zhou Y D, Chen W B et al. Phase function effects on the retrieval of oceanic high-spectral-resolution lidar[J]. Optics Express, 27, A654-A668(2019).

    [85] Cui X Y, Liu Q, Gu Q L et al. Multiple scattering effect of water clouds on spaceborne oceanic lidar signals[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 288, 108253(2022).

    [86] Liu Q, Liu D, Bai J et al. Relationship between the effective attenuation coefficient of spaceborne lidar signal and the IOPs of seawater[J]. Optics Express, 26, 30278-30291(2018).

    [87] Krekov G M, Krekova M M, Shamanaev V S. Laser sensing of a subsurface oceanic layer. I. Effect of the atmosphere and wind-driven sea waves[J]. Applied Optics, 37, 1589-1595(1998).

    [88] Walker R E, McLean J W. Lidar equations for turbid media with pulse stretching[J]. Applied Optics, 38, 2384-2397(1999).

    [89] Kopilevich Y I, Feygels V I, Surkov A I. Mathematical modeling of input signals for oceanographic lidar systems[J]. Proceedings of SPIE, 5155, 30-39(2003).

    [90] Hu Y X, Liu Z Y, Winker D et al. Simple relation between lidar multiple scattering and depolarization for water clouds[J]. Optics Letters, 31, 1809-1811(2006).

    [91] Hu Y X. Depolarization ratio-effective lidar ratio relation: theoretical basis for space lidar cloud phase discrimination[J]. Geophysical Research Letters, 34, 224-238(2007).

    [92] Reitebuch O, Lemmerz C, Nagel E et al. The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: instrument design and comparison to satellite instrument[J]. Journal of Atmospheric and Oceanic Technology, 26, 2501-2515(2009).

    [93] Rogers R R, Hostetler C A, Hair J W et al. Assessment of the CALIPSO Lidar 532 nm attenuated backscatter calibration using the NASA LaRC airborne High Spectral Resolution Lidar[J]. Atmospheric Chemistry and Physics, 11, 1295-1311(2011).

    [94] Mona L, Pappalardo G, Amodeo A et al. One year of CNR-IMAA multi-wavelength Raman lidar measurements in coincidence with CALIPSO overpasses: level 1 products comparison[J]. Atmospheric Chemistry and Physics, 9, 7213-7228(2009).

    [95] Witschas B, Lemmerz C, Geiß A et al. First validation of Aeolus wind observations by airborne Doppler wind lidar measurements[J]. Atmospheric Measurement Techniques, 13, 2381-2396(2020).

    [96] Kurtz N T, Markus T, Cavalieri D J et al. Comparison of ICESat data with airborne laser altimeter measurements over Arctic Sea ice[J]. IEEE Transactions on Geoscience and Remote Sensing, 46, 1913-1924(2008).

    [97] Ma X, Bartlett K, Harmon K et al. Comparison of AOD between CALIPSO and MODIS: significant differences over major dust and biomass burning regions[J]. Atmospheric Measurement Techniques, 6, 2391-2401(2013).

    [98] Redemann J, Vaughan M A, Zhang Q et al. The comparison of MODIS-Aqua (C5) and CALIOP (V2 & V3) aerosol optical depth[J]. Atmospheric Chemistry and Physics, 12, 3025-3043(2012).

    [99] Royer P, Raut J C, Ajello G et al. Synergy between CALIOP and MODIS instruments for aerosol monitoring: application to the Po Valley[J]. Atmospheric Measurement Techniques, 3, 893-907(2010).

    [100] Xu J J, Bu L B, Liu J Q et al. Airborne high-spectral-resolution lidar for atmospheric aerosol detection[J]. Chinese Journal of Lasers, 47, 0710003(2020).

    [101] Grigas T, Hervo M, Gimmestad G et al. CALIOP near-real-time backscatter products compared to EARLINET data[J]. Atmospheric Chemistry and Physics, 15, 12179-12191(2015).

    [102] Papagiannopoulos N, Mona L, Alados-Arboledas L et al. CALIPSO climatological products: evaluation and suggestions from EARLINET[J]. Atmospheric Chemistry and Physics, 16, 2341-2357(2016).

    [103] Pappalardo G, Wandinger U, Mona L et al. EARLINET correlative measurements for CALIPSO: first intercomparison results[J]. Journal of Geophysical Research, 115, D00H19(2010).

    [104] Escribano J, Di Tomaso E, Jorba O et al. Assimilating spaceborne lidar dust extinction can improve dust forecasts[J]. Atmospheric Chemistry and Physics, 22, 535-560(2022).

    [105] Guo J P, Liu B M, Gong W et al. Technical Note: first comparison of wind observations from ESA′s satellite mission Aeolus and ground-based Radar wind profiler network of China[J]. Atmospheric Chemistry and Physics, 21, 2945-2958(2021).

    [106] Campbell J R, Tackett J L, Reid J S et al. Evaluating nighttime CALIOP 0.532 μm aerosol optical depth and extinction coefficient retrievals[J]. Atmospheric Measurement Techniques, 5, 2143-2160(2012).

    [107] Pappalardo G, Amodeo A, Apituley A et al. EARLINET: towards an advanced sustainable European aerosol lidar network[J]. Atmospheric Measurement Techniques, 7, 2389-2409(2014).

    [108] Ansmann A, Bösenberg J, Chaikovsky A et al. Long-range transport of Saharan dust to northern Europe: the 11-16 October 2001 outbreak observed with EARLINET[J]. Journal of Geophysical Research: Atmospheres, 108, 4783(2003).

    [109] Wandinger U. Air mass modification over Europe: EARLINET aerosol observations from Wales to Belarus[J]. Journal of Geophysical Research, 109, D24205(2004).

    [110] Berkoff T A, Welton E J, Campbell J R et al. Observations of aerosols using the micro-pulse lidar NETwork (MPLNET)[C], 2208-2211(2004).

    [111] Engelmann R, Kanitz T, Baars H et al. The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: the neXT generation[J]. Atmospheric Measurement Techniques, 9, 1767-1784(2016).

    [112] Shen X, Wang N C, Veselovskii I et al. Development of ZJU high-spectral-resolution lidar for aerosol and cloud: calibration of overlap function[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 257, 107338(2020).

    [113] Xiao D, Wang N C, Shen X et al. Development of ZJU high-spectral-resolution lidar for aerosol and cloud: extinction retrieval[J]. Remote Sensing, 12, 3047(2020).

    [114] Wang N C, Shen X, Xiao D et al. Development of ZJU high-spectral-resolution lidar for aerosol and cloud: feature detection and classification[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 261, 107513(2021).

    [115] Cheng Z T, Liu D, Liu C et al. Multi-longitudinal-mode high-spectral-resolution lidar[J]. Acta Optica Sinica, 37, 0401001(2017).

    [116] Duan L L, Liu D, Zhang Y P et al. Lidar data gluing technology based on hybrid intelligent algorithm[J]. Acta Optica Sinica, 37, 0601002(2017).

    [117] Luo J, Liu D, Xu P T et al. High-precision polarizing beam splitting system based on polarizing beam splitter[J]. Chinese Journal of Lasers, 43, 1210001(2016).

    [118] Zhang Y P, Liu D, Shen X et al. Design of iodine absorption cell for high-spectral-resolution lidar[J]. Optics Express, 25, 15913-15926(2017).

    [119] Dong J F, Liu J Q, Bi D C et al. Optimal iodine absorption line applied for spaceborne high spectral resolution lidar[J]. Applied Optics, 57, 5413-5419(2018).

    [120] Ke J, Sun Y, Dong C et al. Development of China′s first space-borne aerosol-cloud high-spectral-resolution lidar: retrieval algorithm and airborne demonstration[J]. PhotoniX, 3, 17(2022).

    [121] Zhong T F, Wang N C, Shen X et al. Determination of planetary boundary layer height with lidar signals using maximum limited height initialization and range restriction(MLHI-RR)[J]. Remote Sensing, 12, 2272(2020).

    [122] Xia H Y, Sun D S, Yang Y H et al. Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation[J]. Applied Optics, 46, 7120-7131(2007).

    [123] Wang B X, Shen F H, Sun D S et al. Beam scanning and wind field measurement of direct detection Doppler lidar[J]. Infrared and Laser Engineering, 36, 69-72(2007).

    [124] Wang G C, Sun D S, Du H L et al. Design and analysis of 532 nm Doppler wind lidar with Fabry-Perot etalon[J]. High Power Laser and Particle Beams, 23, 949-953(2011).

    [125] Di H G, Hua D X. Research progress of lidar in cloud detection[J]. Acta Optica Sinica, 42, 0600002(2022).

    [126] Liu Z S, Wang Z J, Wu S H et al. Fine-measuring technique and application for sea surface wind by mobile Doppler wind lidar[J]. Optical Engineering, 48, 066002(2009).

    [127] Wang Z J, Liu Z S, Liu L P et al. Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis[J]. Applied Optics, 49, 6960-6978(2010).

    [128] Song X Q, Guo J J, Yan Z A et al. High-spectral-resolution lidar detection of atmospheric aerosol optical properties[J]. Progress in Natural Science, 18, 1009-1015(2008).

    [129] Guo J J, Yan Z A, Wu S H et al. Low level atmospheric temperature measurement with high spectral resolution lidar[J]. Journal of Optoelectronics Laser, 19, 66-69(2008).

    [130] Zhao M, Xie C B, Zhong Z Q et al. Development of high spectral resolution lidar system for measuring aerosol and cloud[J]. Journal of the Optical Society Korea, 19, 695-699(2015).

    [131] Zhao M, Xie C B, Zhong Z Q et al. High spectral resolution lidar for measuring atmospheric transmission[J]. Infrared and Laser Engineering, 45, 76-80(2016).

    [132] Wang N, Zhang K, Shen X et al. Dual-field-of-view high-spectral-resolution lidar: Simultaneous profiling of aerosol and water cloud to study aerosol-cloud interaction[J]. Proceedings of the National Academy of Sciences of the United States of America, 119, e2110756119(2022).

    [133] Thorsen T J, Fu Q, Newsom R K et al. Automated retrieval of cloud and aerosol properties from the ARM Raman lidar. Part I: feature detection[J]. Journal of Atmospheric and Oceanic Technology, 32, 1977-1998(2015).

    [134] Giannakaki E, Vraimaki E, Balis D. Validation of CALIPSO level-2 products using a ground based lidar in Thessaloniki, Greece[J]. Proceedings of SPIE, 8182, 818215(2011).

    [135] Kim S W, Berthier S, Raut J C et al. Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea[J]. Atmospheric Chemistry and Physics, 8, 3705-3720(2008).

    [136] Tesche M, Wandinger U, Ansmann A et al. Ground-based validation of CALIPSO observations of dust and smoke in the Cape Verde region[J]. Journal of Geophysical Research: Atmospheres, 118, 2889-2902(2013).

    [137] Mamouri R E, Amiridis V, Papayannis A et al. Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece[J]. Atmospheric Measurement Techniques, 2, 513-522(2009).

    [138] Wu Y H, Cordero L, Gross B et al. Assessment of CALIPSO attenuated backscatter and aerosol retrievals with a combined ground-based multi-wavelength lidar and sunphotometer measurement[J]. Atmospheric Environment, 84, 44-53(2014).

    [139] Baroni T, Pandey P, Preissler J et al. Comparison of backscatter coefficient at 1064 nm from CALIPSO and ground-based ceilometers over coastal and non-coastal regions[J]. Atmosphere, 11, 1190(2020).

    [140] Satoh M, Inoue T, Miura H. Evaluations of cloud properties of global and local cloud system resolving models using CALIPSO and CloudSat simulators[J]. Journal of Geophysical Research, 115, D00H14(2010).

    [141] Kodama C, Noda A T, Satoh M. An assessment of the cloud signals simulated by NICAM using ISCCP, CALIPSO, and CloudSat satellite simulators[J]. Journal of Geophysical Research, 117, D12210(2012).

    [142] Andersson S M, Martinsson B G, Vernier J P et al. Significant radiative impact of volcanic aerosol in the lowermost stratosphere[J]. Nature Communications, 6, 7692(2015).

    [143] de Guélis T V, Chepfer H, Guzman R et al. Space lidar observations constrain longwave cloud feedback[J]. Scientific Reports, 8, 16570(2018).

    [144] van Tricht K, Lhermitte S, Lenaerts J T M et al. Clouds enhance Greenland ice sheet meltwater runoff[J]. Nature Communications, 7, 10266(2016).

    [145] Mülmenstädt J, Salzmann M, Kay J E et al. An underestimated negative cloud feedback from cloud lifetime changes[J]. Nature Climate Change, 11, 508-513(2021).

    [146] Huang Y Y, Ding Q H, Dong X Q et al. Summertime low clouds mediate the impact of the large-scale circulation on Arctic Sea ice[J]. Communications Earth & Environment, 2, 38(2021).

    [147] Kacimi S, Kwok R. The Antarctic Sea ice cover from ICESat-2 and CryoSat-2: freeboard, snow depth, and ice thickness[J]. The Cryosphere, 14, 4453-4474(2020).

    [148] Kurtz N T, Markus T. Satellite observations of Antarctic Sea ice thickness and volume[J]. Journal of Geophysical Research, 117, C08025(2012).

    [149] Kern S, Spreen G. Uncertainties in Antarctic Sea-ice thickness retrieval from ICESat[J]. Annals of Glaciology, 56, 107-119(2015).

    [150] Petty A A, Kurtz N T, Kwok R et al. Winter Arctic Sea ice thickness from ICESat-2 freeboards[J]. Journal of Geophysical Research, 125, e2019JC015764(2020).

    [151] Narine L L, Popescu S C, Malambo L. Using ICESat-2 to estimate and map forest aboveground biomass: a first example[J]. Remote Sensing, 12, 1824(2020).

    [152] Stephens G, Winker D, Pelon J et al. CloudSat and CALIPSO within the A-train: ten years of actively observing the earth system[J]. Bulletin of the American Meteorological Society, 99, 569-581(2018).

    [153] Cesana G, Chepfer H. Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO-GOCCP[J]. Journal of Geophysical Research, 118, 7922-7937(2013).

    [154] Chen Y C, Christensen M W, Stephens G L et al. Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds[J]. Nature Geoscience, 7, 643-646(2014).

    [155] Chakrabarty R K, Beres N D, Moosmüller H et al. Soot superaggregates from flaming wildfires and their direct radiative forcing[J]. Scientific Reports, 4, 5508(2014).

    [156] Schutz B E, Zwally H J, Shuman C A et al. Overview of the ICESat mission[J]. Geophysical Research Letters, 32, L21S01(2005).

    [157] Markus T, Neumann T, Martino A et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation[J]. Remote Sensing of Environment, 190, 260-273(2017).

    [158] Kwok R, Markus T, Kurtz N T et al. Surface height and sea ice freeboard of the Arctic Ocean from ICESat-2: characteristics and early results[J]. Journal of Geophysical Research, 124, 6942-6959(2019).

    [159] Zhu X X, Wang C, Nie S et al. Mapping forest height using photon-counting LiDAR data and Landsat 8 OLI data: a case study in Virginia and North Carolina, USA[J]. Ecological Indicators, 114, 106287(2020).

    [160] Li W, Niu Z, Shang R et al. High-resolution mapping of forest canopy height using machine learning by coupling ICESat-2 LiDAR with Sentinel-1, Sentinel-2 and Landsat-8 data[J]. International Journal of Applied Earth Observation and Geoinformation, 92, 102163(2020).

    [161] Narine L L, Popescu S C, Malambo L. Synergy of ICESat-2 and landsat for mapping forest aboveground biomass with deep learning[J]. Remote Sensing, 11, 1503(2019).

    [162] Parrish C E, Magruder L A, Neuenschwander A L et al. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS′s bathymetric mapping performance[J]. Remote Sensing, 11, 1634(2019).

    [163] Ma Y, Xu N, Liu Z et al. Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets[J]. Remote Sensing of Environment, 250, 112047(2020).

    [164] Lu X M, Hu Y X, Yang Y K et al. Antarctic spring ice-edge blooms observed from space by ICESat-2[J]. Remote Sensing of Environment, 245, 111827(2020).

    [165] Oikawa E, Nakajima T, Inoue T et al. A study of the shortwave direct aerosol forcing using ESSP/CALIPSO observation and GCM simulation[J]. Journal of Geophysical Research: Atmospheres, 118, 3687-3708(2013).

    [166] Kovilakam M, Mahajan S, Saravanan R et al. Climate impacts of CALIPSO-guided corrections to black carbon aerosol vertical distributions in a global climate model[J]. Geophysical Research Letters, 44, 10549-10559(2017).

    [167] Christian K, Wang J, Ge C et al. Radiative forcing and stratospheric warming of pyrocumulonimbus smoke aerosols: first modeling results with multisensor (EPIC, CALIPSO, and CATS) views from space[J]. Geophysical Research Letters, 46, 10061-10071(2019).

    [168] Yorks J E, Hlavka D L, Vaughan M A et al. Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: spatial properties[J]. Journal of Geophysical Research, 116, D19207(2011).

    [169] Ham S H, Kato S, Rose F G et al. Cloud occurrences and cloud radiative effects (CREs) from CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat radar-lidar (RL) products[J]. Journal of Geophysical Research, 122, 8852-8884(2017).

    [170] Huang J F, Guo J P, Wang F et al. CALIPSO inferred most probable heights of global dust and smoke layers[J]. Journal of Geophysical Research, 120, 5085-5100(2015).

    [171] Kato S, Sun-Mack S, Miller W F et al. Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles[J]. Journal of Geophysical Research, 115, D00H28(2010).

    [172] Su H, Jiang J H, Neelin J D et al. Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate[J]. Nature Communications, 8, 15771(2017).

    [173] Tao Y T, Zhao H K, Zhou Y D et al. Overview of inversion methods of ocean subsurface particulate backscattering coefficient by using CALIOP data[J]. Infrared and Laser Engineering, 50, 20211037(2021).

    [174] Dionisi D, Brando V E, Volpe G et al. Seasonal distributions of ocean particulate optical properties from spaceborne lidar measurements in Mediterranean and Black Sea[J]. Remote Sensing of Environment, 247, 111889(2020).

    [175] Lu X M, Hu Y X, Trepte C et al. A super-resolution laser altimetry concept[J]. IEEE Geoscience and Remote Sensing Letters, 11, 298-302(2014).

    [176] Lu X M, Hu Y X, Liu Z Y et al. Observations of Arctic snow and sea ice cover from CALIOP lidar measurements[J]. Remote Sensing of Environment, 194, 248-263(2017).

    [177] Chen B L, Yang Z D, Min M et al. Application requirements and research progress of spaceborne Doppler wind lidar[J]. Laser & Optoelectronics Progress, 57, 190003(2020).

    [178] Baker W E, Emmitt G D, Robertson F et al. Lidar-measured winds from space: a key component for weather and climate prediction[J]. Bulletin of the American Meteorological Society, 76, 869-888(1995).

    [179] Weissmann M, Cardinali C. Impact of airborne Doppler lidar observations on ECMWF forecasts[J]. Quarterly Journal of the Royal Meteorological Society, 133, 107-116(2007).

    [180] Weissmann M, Langland R H, Cardinali C et al. Influence of airborne Doppler wind lidar profiles near Typhoon Sinlaku on ECMWF and NOGAPS forecasts[J]. Quarterly Journal of the Royal Meteorological Society, 138, 118-130(2012).

    [181] Huang M, Gao Z Q, Miao S G et al. Estimate of boundary-layer depth over Beijing, China, using Doppler lidar data during SURF-2015[J]. Boundary-Layer Meteorology, 162, 503-522(2017).

    [182] Schween J H, Hirsikko A, Löhnert U et al. Mixing-layer height retrieval with ceilometer and Doppler lidar: from case studies to long-term assessment[J]. Atmospheric Measurement Techniques, 7, 3685-3704(2014).

    [183] Zhang J A, Atlas R, Emmitt G D et al. Airborne Doppler wind lidar observations of the tropical cyclone boundary layer[J]. Remote Sensing, 10, 825(2018).

    [184] Toumi R, Bekki S, Law K S. Indirect influence of ozone depletion on climate forcing by clouds[J]. Nature, 372, 348-351(1994).

    [185] Hommel R, Timmreck C, Giorgetta M A et al. Quasi-biennial oscillation of the tropical stratospheric aerosol layer[J]. Atmospheric Chemistry and Physics, 15, 5557-5584(2015).

    [186] Liu Z L, Barlow J F, Chan P W et al. A review of progress and applications of pulsed Doppler wind LiDARs[J]. Remote Sensing, 11, 2522(2019).

    [187] Liu L Y, Bai Y, Sun R et al. Stereo observation and inversion of the key parameters of global carbon cycle: project overview and mid-term progresses[J]. Remote Sensing Technology and Application, 36, 11-24(2021).

    [188] Nassar R, Mastrogiacomo J P, Bateman-Hemphill W et al. Advances in quantifying power plant CO2 emissions with OCO-2[J]. Remote Sensing of Environment, 264, 112579(2021).

    [189] Schuh A E, Otte M, Lauvaux T et al. Far-field biogenic and anthropogenic emissions as a dominant source of variability in local urban carbon budgets: a global high-resolution model study with implications for satellite remote sensing[J]. Remote Sensing of Environment, 262, 112473(2021).

    [190] Peters W, Jacobson A R, Sweeney C et al. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker[J]. Proceedings of the National Academy of Sciences of the United States of America, 104, 18925-18930(2007).

    [191] Tian X J, Xie Z H, Cai Z N et al. The Chinese carbon cycle data-assimilation system (Tan-Tracker)[J]. Chinese Science Bulletin, 59, 1541-1546(2014).

    [192] Lyapustin A, Wang Y J, Korkin S et al. MODIS collection 6 MAIAC algorithm[J]. Atmospheric Measurement Techniques, 11, 5741-5765(2018).

    [193] Mao J P, Kawa S R. Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight[J]. Applied Optics, 43, 914-927(2004).

    [194] Uchino O, Kikuchi N, Sakai T et al. Influence of aerosols and thin cirrus clouds on the GOSAT-observed CO2: a case study over Tsukuba[J]. Atmospheric Chemistry and Physics, 12, 3393-3404(2012).

    [195] Pincus R, Hemler R, Klein S A. Using stochastically generated subcolumns to represent cloud structure in a large-scale model[J]. Monthly Weather Review, 134, 3644-3656(2006).

    [196] Barker H W, Jerg M P, Wehr T et al. A 3D cloud-construction algorithm for the EarthCARE satellite mission[J]. Quarterly Journal of the Royal Meteorological Society, 137, 1042-1058(2011).

    [197] Liu D, Chen S J, Cheng C H et al. Analysis of global three-dimensional aerosol structure with spectral radiance matching[J]. Atmospheric Measurement Techniques, 12, 6541-6556(2019).

    [198] Bettenhausen C, Sayer A M, Hsu N C et al. Retrieving the height of smoke and dust aerosols by synergistic use of VIIRS, OMPS, and CALIOP observations[J]. Journal of Geophysical Research-Atmospheres, 120, 8372-8388(2015).

    [199] Sun X J, Li H, Barker H et al. Satellite-based estimation of cloud base heights using constrained spectral radiance matching[J]. Quarterly Journal of the Royal Meteorological Society, 142, 224-232(2015).

    [200] Chen S J, Cheng C H, Zhang X Y et al. Construction of nighttime cloud layer height and classification of cloud types[J]. Remote Sensing, 12, 668(2020).

    [201] Han B. Collaborative regression on aerosol optical thickness from heterogeneous remote sensing data[J]. International Journal of Future Generation Communication and Networking, 9, 339-350(2016).

    [202] Lee J, Shi Y R, Cai C J et al. Machine learning based algorithms for global dust aerosol detection from satellite images: inter-comparisons and evaluation[J]. Remote Sensing, 13, 456(2021).

    [203] Kox S, Bugliaro L, Ostler A. Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing[J]. Atmospheric Measurement Techniques, 7, 3233-3246(2014).

    [204] Bills B G, Borsa A A, Comstock R L. MISR-based passive optical bathymetry from orbit with few-cm level of accuracy on the Salar de Uyuni, Bolivia[J]. Remote Sensing of Environment, 107, 240-255(2007).

    [205] Duan Z, Bastiaanssen W G M. Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data[J]. Remote Sensing of Environment, 134, 403-416(2013).

    [206] Arsen A, Crétaux J F, Berge-Nguyen M et al. Remote sensing-derived bathymetry of lake poopó[J]. Remote Sensing, 6, 407-420(2013).

    [207] Li Y, Gao H L, Jasinski M F et al. Deriving high-resolution reservoir bathymetry from ICESat-2 prototype photon-counting lidar and landsat imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 57, 7883-7893(2019).

    [208] le Quilleuc A, Collin A, Jasinski M et al. Very high-resolution satellite-derived bathymetry and habitat mapping using Pleiades-1 and ICESat-2[J]. Remote Sensing, 14, 133(2021).

    [209] Zhang X H, Chen Y F, Le Y et al. Nearshore bathymetry based on ICESat-2 and multispectral images: comparison between sentinel-2, landsat-8, and testing Gaofen-2[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 2449-2462(2022).

    [210] Xie C S, Chen P, Pan D L et al. Improved filtering of ICESat-2 lidar data for nearshore bathymetry estimation using sentinel-2 imagery[J]. Remote Sensing, 13, 4303(2021).

    [211] Gleason A C R, Smith R, Purkis S J et al. The prospect of global coral reef bathymetry by combining ice, cloud, and land elevation satellite-2 altimetry with multispectral satellite imagery[J]. Frontiers in Marine Science, 8, 694783(2021).

    [212] Lee Z P, Shangguan M J, Garcia R A et al. Confidence measure of the shallow-water bathymetry map obtained through the fusion of lidar and multiband image data[J]. Journal of Remote Sensing, 2021, 9841804(2021).

    [213] Thomas N, Pertiwi A P, Traganos D et al. Space-borne cloud-native satellite-derived bathymetry (SDB) models using ICESat-2 and Sentinel-2[J]. Geophysical Research Letters, 48, e2020GL092170(2021).

    [214] Hirschberg J G, Byrne J D. Rapid underwater ocean measurements using Brillouin scattering[J]. Proceedings of SPIE, 0489, 270-276(1984).

    [215] Leonard D A, Sweeney H E. Remote sensing of ocean physical properties: a comparison of Raman and Brillouin techniques[J]. Proceedings of SPIE, 0925, 407-414(1988).

    [216] Hair J, Hostetler C, Hu Y X et al. Combined atmospheric and ocean profiling from an airborne high spectral resolution lidar[J]. EPJ Web of Conferences, 119, 22001(2016).

    [217] Zhou Y D, Liu D, Xu P T et al. Retrieving the seawater volume scattering function at the 180° scattering angle with a high-spectral-resolution lidar[J]. Optics Express, 25, 11813-11826(2017).

    [218] Schulien J A, Behrenfeld M J, Hair J W et al. Vertically-resolved phytoplankton carbon and net primary production from a high spectral resolution lidar[J]. Optics Express, 25, 13577-13587(2017).

    [221] Liu R R, Ling Q L, Zhang Q B et al. Detection of chlorophyll a and CDOM absorption coefficient with a dual-wavelength oceanic lidar: wavelength optimization method[J]. Remote Sensing, 12, 3021(2020).

    [222] Wang Z J, Zhang Y, Liu D et al. Research on the development of detection satellite technology in the novel multi-beam land and ocean lidar[J]. Infrared and Laser Engineering, 50, 20211041(2021).

    [223] Pardini M, Armston J, Qi W L et al. Early lessons on combining lidar and multi-baseline SAR measurements for forest structure characterization[J]. Surveys in Geophysics, 40, 803-837(2019).

    [224] Shu R, Huang G H, Hou L B et al. Multi-channel photon counting three-dimensional imaging laser radar system using fiber array coupled Geiger-mode avalanche photodiode[J]. Proceedings of SPIE, 8542, 85420C(2012).

    [225] Li Z H, Wu E, Pang C K et al. Multi-beam single-photon-counting three-dimensional imaging lidar[J]. Optics Express, 25, 10189-10195(2017).

    [226] Malik M, Magaña-Loaiza O S, Boyd R W. Quantum-secured imaging[J]. Applied Physics Letters, 101, 241103(2012).

    [227] Xia H Y, Shentu G L, Shangguan M J et al. Long-range micro-pulse aerosol lidar at 1.5  μm with an upconversion single-photon detector[J]. Optics Letters, 40, 1579-1582(2015).

    [228] Høgstedt L, Fix A, Wirth M et al. Upconversion-based lidar measurements of atmospheric CO2[J]. Optics Express, 24, 5152-5161(2016).

    [229] Xia H Y, Shangguan M J, Wang C et al. Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer[J]. Optics Letters, 41, 5218-5221(2016).

    Tools

    Get Citation

    Copy Citation Text

    Dong Liu, Sijie Chen, Qun Liu, Ju Ke, Nanchao Wang, Yingshan Sun, Shuaibo Wang, Yatong Chen, Weize Li, Yuting Tao, Chong Liu, Lan Wu, Yudi Zhou. Spaceborne Environmental Detection Lidar and Its Key Techniques[J]. Acta Optica Sinica, 2022, 42(17): 1701001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Jul. 7, 2022

    Accepted: Aug. 1, 2022

    Published Online: Sep. 16, 2022

    The Author Email: Liu Dong (liudongopt@zju.edu.cn)

    DOI:10.3788/AOS202242.1701001

    Topics