Acta Optica Sinica, Volume. 42, Issue 17, 1701001(2022)

Spaceborne Environmental Detection Lidar and Its Key Techniques

Dong Liu1、*, Sijie Chen1, Qun Liu1,2, Ju Ke1, Nanchao Wang1, Yingshan Sun1, Shuaibo Wang1, Yatong Chen1, Weize Li1, Yuting Tao1, Chong Liu1, Lan Wu1, and Yudi Zhou1,2
Author Affiliations
  • 1College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • 2Ningbo Innovation Center, Zhejiang University, Ningbo 315100, Zhejiang, China
  • show less
    Figures & Tables(23)
    Spaceborne environmental lidar. (a) Diagram of basic detection principle[50]; (b) schematic of emulator
    Signal simulation and retrieval of ACDL HSRL. (a) Attenuated backscatter coefficient of parallel channel B∥; (b) attenuated backscatter coefficient of perpendicular channel B⊥; (c) attenuated backscatter coefficient of molecular channel Bm; (d) layer information; (e) backscatter coefficient βa; (f) extinction coefficient αa
    Theoretical measurement error for ACDL HSRL at 1 km. (a) Relative error of backscatter coefficient;(b) absolute error of extinction coefficient
    Two-way optical depths for two wavelengths simulated by spaceborne IPDA lidar forward model
    Global distribution of XCO2 pseudo data simulated by spaceborne IPDA lidar inversion model
    Wind lidar simulation results. (a) Molecular signal distribution; (b) aerosol signal distribution; (c) signal-to-noise ratio distribution; (d) detection error ξ distribution
    Simulation analysis of spaceborne wind lidar. (a) Scattering signal distribution; (b) signal-to-noise ratio distribution; (c) detection error distribution
    Spaceborne lidar return signal simulation [50]. (a) Input attenuation coefficients; (b) simulated lidar signals
    Polarized lidar signal simulation[50]. (a) Input optical properties of water; (b) comparison of measured and simulated signals (data above 0 m is the atmospheric signal because the shipborne lidar has a certain distance from the water surface)
    Simulation analysis of spaceborne lidar in case I water [86]. (a) Lidar return signals varying with depth; (b) effective attenuation coefficients varying with depth
    Influence of multiple scattering of cloud on oceanic lidar detection[85]. (a) Water cloud echo signal with different scattering times (n is the scattering times); (b) relationship among effective attenuation coefficient error, cloud base height, and optical depth
    Atmospheric HSRL system. (a) Internal structure diagram; (b) optical path[132]
    Track distribution of field calibration test of CALIPSO and airborne laser radar from 2006 to 2011 carried out by NASA[93]
    Flight tracks of validation of ALADIN and A2D in 2018[95]
    Vertical distributions of phytoplankton of the Yellow Sea and Bohai Sea at different depths. (a) Kd; (b) bbp
    CALIOP detects global oceanic particulate distribution
    Demonstration of aerosol and cloud distribution obtained by active and passive fusion[197]. (a) CALIPSO profile and MODIS radiation data; (b) 3D extended results
    Retrieval results of shallow water depth (within 40 m) in Bahamas from ICESat-2 photon data and Sentinel-2 ocean color. Water depth inversion using the same remote sensing data source was published in[163]
    Shipborne oceanic HSRL system[220]
    GEDI multi-beam ground detection spot distribution diagram[223]
    Schematic diagram of quantum wind lidar developed by University of Science and Technology of China[229] (TA:tunable attenuator; WDM: wavelength division multiplexer; L: collimation mirror; TDFA: thulium-doped fiber amplifier; TEC: thermo electric cooler; MCS: multi-channel sample module)
    • Table 1. Summary of in-orbit, retired, and under-research spaceborne laser altimeters and atmospheric lidars

      View table

      Table 1. Summary of in-orbit, retired, and under-research spaceborne laser altimeters and atmospheric lidars

      DeviceMissionSponsorYearRepeat cycleLidar payloadWavelength /nmTypeTarget
      Space-borne laser altimetersICESatNASA200391GLAS532/1064Laser altimeterIce,elevation,clouds,aerosols
      ICESat-2NASA201891ATLAS532Photon-counting laser altimeterIce,topograpy,vegetation
      Space-borne atmospheric lidarsCALIPSONASA/CNES200616CALIOP532/1064Mie-scatteringClouds,aerosols
      CATSNASA20153CATS532/1064Mie-scattering/HSRLClouds,aerosols
      AeolusESA20187ALADIN355DopplerWind field,clouds,aerosols
      DQ-1CNSA202216ACDL532/1064/1572HSRL/IPDACO2,clouds,aerosols
      EarthCAREESA/JAXA202325ATLID355HSRLClouds,aerosols
      ASCENDSNASA202516IPDA lidar1572IPDACO2
      MERLINCNES/DLR202728IPDA lidar1645IPDACH4
    • Table 2. Validation cases for CALIOP based on ground-based lidar

      View table

      Table 2. Validation cases for CALIOP based on ground-based lidar

      CityCountryLocationSpacing /kmLength /kmTime /minDatasets
      Thessaloniki134Greece40.5°N,22.9°E<1005-105120Levels 1&2
      Potenza94Italy40.6°N,15.7°E66.5530Level 1
      Seoul135Korea37.5°N,6.95°E5-10615Levels 1&2
      Barcelona101Spain41.4°N,2.12°E77.910030Level 1
      Granada101Spain37.2°N,3.61°W6710030Level 1
      Praia136Cape Verde14.6°N,23.3°W4-487200-60066-310Levels 1&2
      L′Aquila102-103Italy42.4°N,13.3°E53-1071550Level 2
      Hambuger102-103Germany53.6°N,9.97°E204030Level 2
      Leipzig102-103Germany51.4°N,12.4°E30540144Level 2
      Maisach102-103Germany48.2°N,11.3°E554030Level 2
      Athens137Greece37.9°N,23.6°E16-805-2060Level 1
      New York138USA40.8°N,73.9°W30-10050-10030-100Level 1
      Mace Head139Ireland59.3°N,9.9°W29-605-1005-60Level 2
      Harzgerode139Germany51.6°N,11.1°E43.655-10060Level 2
    Tools

    Get Citation

    Copy Citation Text

    Dong Liu, Sijie Chen, Qun Liu, Ju Ke, Nanchao Wang, Yingshan Sun, Shuaibo Wang, Yatong Chen, Weize Li, Yuting Tao, Chong Liu, Lan Wu, Yudi Zhou. Spaceborne Environmental Detection Lidar and Its Key Techniques[J]. Acta Optica Sinica, 2022, 42(17): 1701001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Jul. 7, 2022

    Accepted: Aug. 1, 2022

    Published Online: Sep. 16, 2022

    The Author Email: Liu Dong (liudongopt@zju.edu.cn)

    DOI:10.3788/AOS202242.1701001

    Topics