Semiconductor Optoelectronics, Volume. 43, Issue 6, 1040(2022)

Advances in the Research on MOEMS Gas Sensing Technology

CAI Weiming1... REN Qingying1,2, JIANG Yanhu1, WEI Hongfei1, PENG Junyue1, CHANG Chunyun2, and XUE Mei12 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(62)

    [2] [2] Chen S, Zhang Y, Hong X, et al. Technologies and applications of silicon-based micro-optical electromechanical systems: A brief review[J]. J. of Semiconductors, 2022, 43(8): 081301-1-081301-9.

    [3] [3] Majhi S M, Mirzaei A, Kim H W, et al. Recent advances in energy-saving chemiresistive gas sensors: A review[J]. Nano Energy, 2021, 79: 105369.

    [4] [4] Hagleitner C, Hierlemann A, Lange D, et al. Smart single-chip gas sensor microsystem[J]. Nature, 2001, 414(6861): 293-296.

    [5] [5] Schroeder H, Scheel W. MOEMS: technology, packaging, and optical interconnection[J]. Proc. SPIE, 2001, 4284: 122-131.

    [6] [6] Bogue R. Recent developments in MEMS sensors: A review of applications, markets and technologies[J]. Sensor Review, 2013, 33(4): 300-304.

    [7] [7] Li J Y, Yang S, Du Z H, et al. Quantitative analysis of ammonia adsorption in Ag/AgI-coated hollow waveguide by mid-infrared laser absorption spectroscopy[J]. Optics and Lasers in Engineering, 2019, 121: 80-86.

    [8] [8] Wang J, Xie P, Li A, et al. Measurement of ammonia by a portable UV-DOAS gas sensor based on multi-pass cell[J]. Advanced Proc. SPIE, 2010, 7853: 631-640.

    [11] [11] Mount G H, Rumburg B, Havig J, et al. Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet[J]. Atmospheric Environment, 2002, 36(11): 1799-1810.

    [12] [12] Claps R, Englich F V, Leleux D P, et al. Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy[J]. Appl. Opt., 2001, 40(24): 4387-4394.

    [13] [13] Huszr H, Pogny A, Bozóki Z, et al. Ammonia monitoring at PPB level using photoacoustic spectroscopy for environmental application[J]. Sensors and Actuators B: Chemical, 2008, 134(2): 1027-1033.

    [14] [14] Fonollosa J, Halford B, Fonseca L, et al. Ethylene optical spectrometer for apple ripening monitoring in controlled atmosphere store-houses[J]. Sensors and Actuators B: Chemical, 2009, 136(2): 546-554.

    [15] [15] McManus J B, Shorter J H, Nelson D D, et al. Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air[J]. Appl. Phys. B, 2008, 92(3): 387-392.

    [16] [16] Lee C, Choi Y J, Jung J S, et al. Measurement of atmospheric monoaromatic hydrocarbons using differential optical absorption spectroscopy: Comparison with on-line gas chromatography measurements in urban air[J]. Atmospheric Environment, 2005, 39(12): 2225-2234.

    [17] [17] Chen W, Cazier F, Tittel F, et al. Measurements of benzene concentration by difference-frequency laser absorption spectroscopy[J]. Appl. Opt., 2000, 39(33): 6238-6242.

    [18] [18] Fetzer G J, Pittner A S, Ryder W L, et al. Tunable diode laser absorption spectroscopy in coiled hollow optical waveguides[J]. Appl. Opt., 2002, 41(18): 3613-3621.

    [19] [19] Kasyutich V L, Martin P A. Multipass optical cell based upon two cylindrical mirrors for tunable diode laser absorption spectroscopy[J]. Appl. Phys. B, 2007, 88(1): 125-130.

    [20] [20] McNeal M P, Moelders N, Pralle M U, et al. Development of optical MEMS CO2 sensors[J]. Proc. SPIE, 2002, 4815: 30-35.

    [21] [21] Vargas-Rodríguez E, Rutt H N. Design of CO, CO2 and CH4 gas sensors based on correlation spectroscopy using a Fabry-Perot interferometer[J]. Sensors and Actuators B: Chemical, 2009, 137(2): 410-419.

    [22] [22] Aleksandrov S E, Gavrilov G A, Kapralov A A, et al. Simulation of characteristics of optical gas sensors based on diode optopairs operating in the mid-IR spectral range[J]. Technical Phys., 2009, 54(6): 874-881.

    [23] [23] Kim S S, Menegazzo N, Young C, et al. Mid-infrared trace gas analysis with single-pass Fourier transform infrared hollow waveguide gas sensors[J]. Appl. Spectroscopy, 2009, 63(3): 331-337.

    [24] [24] Engelbrecht R. A compact NIR fiber-optic diode laser spectrometer for CO and CO2: Analysis of observed 2f wavelength modulation spectroscopy line shapes[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(14): 3291-3298.

    [25] [25] Thorpe M J, Balslev-Clausen D, Kirchner M S, et al. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis[J]. Opt. Express, 2008, 16(4): 2387-2397.

    [26] [26] Barron-Jimenez R, Caton J A, Anderson T N, et al. Application of a difference-frequency-mixing based diode-laser sensor for carbon monoxide detection in the 4.4~4.8μm spectral region[J]. Appl. Phys. B, 2006, 85(2): 185-197.

    [27] [27] Lancaster D G, Richter D, Curl R F, et al. Real-time measurements of trace gases using a compact difference-frequency-based sensor operating at 3.5μm[J]. Appl. Phys. B: Lasers & Optics, 1998, 67(3): 339-345.

    [28] [28] Massie C, Stewart G, McGregor G, et al. Design of a portable optical sensor for methane gas detection[J]. Sensors and Actuators B: Chemical, 2006, 113(2): 830-836.

    [29] [29] Gurlit W, Zimmermann R, Giesemann C, et al. Lightweight diode laser spectrometer CHILD (Compact High-altitude In-situ Laser Diode) for balloonborne measurements of water vapor and methane[J]. Appl. Opt., 2005, 44(1): 91-102.

    [30] [30] Richard E C, Kelly K K, Winkler R H, et al. A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH4 in the upper troposphere and lower stratosphere[J]. Appl. Phys. B, 2002, 75(2): 183-194.

    [31] [31] Alexandrov S E, Gavrilov G A, Kapralov A A, et al. Portable optoelectronic gas sensors operating in the mid-IR spectral range (lambda=3~5μm)[J]. Proc. SPIE, 2002, 4680: 188-194.

    [32] [32] Dooly G, Fitzpatrick C, Lewis E. Deep UV based DOAS system for the monitoring of nitric oxide using ratiometric separation techniques[J]. Sensors and Actuators B: Chemical, 2008, 134(1): 317-323.

    [33] [33] Sonnenfroh D M, Allen M G. Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8μm room-temperature diode laser[J]. Appl. Opt., 1997, 36(30): 7970-7977.

    [34] [34] Sonnenfroh D M, Rawlins W T, Allen M G, et al. Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-CW quantum-cascade lasers[J]. Appl. Opt., 2001, 40(6): 812-820.

    [35] [35] McManus J B, Nelson D D, Herndon S C, et al. Comparison of CW and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900cm-1[J]. Appl. Phys. B, 2006, 85(2): 235-241.

    [36] [36] Crowder J G, Hardaway H R, Elliott C T. Mid-infrared gas detection using optically immersed, room-temperature, semiconductor devices[J]. Measurement Science and Technol., 2002, 13(6): 882-884.

    [37] [37] Cheng A Y S, Chan M H. Acousto-optic differential optical absorption spectroscopy for atmospheric measurement of nitrogen dioxide in Hong Kong[J]. Appl. Spectroscopy, 2004, 58(12): 1462-1468.

    [38] [38] Sonnenfroh D M, Allen M G. Ultrasensitive, visible tunable diode laser detection of NO2[J]. Appl. Opt., 1996, 35(21): 4053-4058.

    [39] [39] Reid J, El-Sherbiny M, Garside B K, et al. Sensitivity limits of a tunable diode laser spectrometer, with application to the detection of NO2 at the 100-PPT level[J]. Appl. Opt., 1980, 19(19): 3349-3354.

    [40] [40] Lou X T, Somesfalean G, Zhang Z G, et al. Sulfur dioxide measurements using an ultraviolet light-emitting diode in combination with gas correlation techniques[J]. Appl. Phys. B, 2009, 94(4): 699-704.

    [41] [41] Rawlins W T, Hensley J M, Sonnenfroh D M, et al. Quantum cascade laser sensor for SO2 and SO3 for application to combustor exhaust streams[J]. Appl. Opt., 2005, 44(31): 6635-6643.

    [42] [42] Levenson M D, Paldus B A, Spence T G, et al. Optical heterodyne detection in cavity ring-down spectroscopy[J]. Chemical Phys. Lett., 1998, 290(4/6): 335-340.

    [43] [43] Lou X T, Somesfalean G, Zhang Z G, et al. Sulfur dioxide measurements using an ultraviolet light-emitting diode in combination with gas correlation techniques[J]. Appl. Phys. B, 2009, 94(4): 699-704.

    [44] [44] Smith S D, Hardaway H R, Crowder J G. Recent developments in the applications of mid-infrared lasers, LEDs, and other solid state sources to gas detection[J]. Proc. SPIE, 2002, 4651: 157-172.

    [45] [45] Chan K, Ito H, Inaba H, et al. 10km-long fibre-optic remote sensing of CH4 gas by near infrared absorption[J]. Appl. Phys. B, 1985, 38(1): 11-15.

    [46] [46] Spannhake J, Schulz O, Helwig A, et al. Design, development and operational concept of an advanced MEMS IR source for miniaturized gas sensor systems[C]// Proc. of IEEE Sensors(2005), 2005: 762-765.

    [47] [47] Van Campenhout J, Liu L, Romeo P R, et al. A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks[J]. IEEE Photon. Technol. Lett., 2008, 20(16): 1345-1347.

    [48] [48] Jasek K, Puton J, Siodlowski B, et al. Platinum-black coatings for infrared emitters[J]. Proc. SPIE, 2003, 5124: 92-95.

    [49] [49] McNeal M P, Moelders N, Pralle M U, et al. Development of optical MEMS CO2 sensors[J]. Proc. SPIE, 2002, 4815: 30-35.

    [50] [50] Liu W, Ming A, Tan Z, et al. Development of MEMS IR source by compound release process with nano-scale silicon forest radiation layer[C]// Proc. IEEE Sensors(2016), 2016: 1-3.

    [51] [51] Sandner T, Grasshoff T, Gaumont E, et al. Translatory MOEMS actuator and system integration for miniaturized Fourier transform spectrometers[J]. J. of Micro/Nanolithography, MEMS, and MOEMS, 2014, 13(1): 011115-1-011115-13.

    [52] [52] Chu H M, Hane K. Design, fabrication and vacuum operation characteristics of two-dimensional comb-drive micro-scanner[J]. Sensors and Actuators A: Physical, 2011, 165(2): 422-430.

    [53] [53] Hofmann U, Janes J, Quenzer H J. High-Q MEMS resonators for laser beam scanning displays[J]. Micromachines, 2012, 3(2): 509-528.

    [54] [54] Koh K H, Kobayashi T, Hsiao F L, et al. Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors[J]. Sensors and Actuators A: Physical, 2010, 162(2): 336-347.

    [56] [56] Ozdogan M, Daeichin M, Ramini A, et al. Parametric resonance of a repulsive force MEMS electrostatic mirror[J]. Sensors and Actuators A: Physical, 2017, 265: 20-31.

    [58] [58] Chu P B, Lee S, Park S, et al. MOEMS: enabling technologies for large optical cross-connects[J]. Proc. SPIE, 2001, 4561: 55-65.

    [59] [59] Aksyuk V A, Pardo F, Bolle C A, et al. Lucent Microstar micromirror array technology for large optical crossconnects[J]. Proc. SPIE, 2000, 4178: 320-324.

    [60] [60] Toshiyoshi H, Fujita H. Electrostatic micro torsion mirrors for an optical switch matrix[J]. J. Microelectromechanical Systems, 1996, 5(4): 231-237.

    [61] [61] Haffner C, Joerg A, Doderer M, et al. Nano-opto-electro-mechanical switches operated at CMOS-level voltages[J]. Science, 2019, 366(6467): 860-864.

    [62] [62] Yang Z, Albrow-Owen T, Cai W, et al. Miniaturization of optical spectrometers[J]. Science, 2021, 371(6528): 0722.

    [63] [63] Kwa T A, Wolffenbuttel R F. Integrated grating/detector array fabricated in silicon using micromachining techniques[J]. Sensors and Actuators A: Physical, 1992, 31(1/3): 259-266.

    [64] [64] Crocombe R A, Flanders D C, Atia W. Micro-optical instrumentation for process spectroscopy[J]. Proc. SPIE, 2004, 5591: 11-25.

    [65] [65] Erfan M, Sabry Y M, Sakr M, et al. On-chip micro-electro-mechanical system Fourier transform infrared (MEMS FT-IR) spectrometer-based gas sensing[J]. Appl. Spectroscopy, 2016, 70(5): 897-904.

    [66] [66] Salem A M, Sabry Y M, Fathy A, et al. Single MEMS chip enabling dual spectral-range infrared micro-spectrometer with optimal detectors[J]. Advanced Materials Technologies, 2021, 6(5): 2001013.

    Tools

    Get Citation

    Copy Citation Text

    CAI Weiming, REN Qingying, JIANG Yanhu, WEI Hongfei, PENG Junyue, CHANG Chunyun, XUE Mei. Advances in the Research on MOEMS Gas Sensing Technology[J]. Semiconductor Optoelectronics, 2022, 43(6): 1040

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Nov. 19, 2022

    Accepted: --

    Published Online: Jan. 27, 2023

    The Author Email:

    DOI:10.16818/j.issn1001-5868.2022111903

    Topics