Semiconductor Optoelectronics, Volume. 43, Issue 6, 1040(2022)
Advances in the Research on MOEMS Gas Sensing Technology
[2] [2] Chen S, Zhang Y, Hong X, et al. Technologies and applications of silicon-based micro-optical electromechanical systems: A brief review[J]. J. of Semiconductors, 2022, 43(8): 081301-1-081301-9.
[3] [3] Majhi S M, Mirzaei A, Kim H W, et al. Recent advances in energy-saving chemiresistive gas sensors: A review[J]. Nano Energy, 2021, 79: 105369.
[4] [4] Hagleitner C, Hierlemann A, Lange D, et al. Smart single-chip gas sensor microsystem[J]. Nature, 2001, 414(6861): 293-296.
[5] [5] Schroeder H, Scheel W. MOEMS: technology, packaging, and optical interconnection[J]. Proc. SPIE, 2001, 4284: 122-131.
[6] [6] Bogue R. Recent developments in MEMS sensors: A review of applications, markets and technologies[J]. Sensor Review, 2013, 33(4): 300-304.
[7] [7] Li J Y, Yang S, Du Z H, et al. Quantitative analysis of ammonia adsorption in Ag/AgI-coated hollow waveguide by mid-infrared laser absorption spectroscopy[J]. Optics and Lasers in Engineering, 2019, 121: 80-86.
[8] [8] Wang J, Xie P, Li A, et al. Measurement of ammonia by a portable UV-DOAS gas sensor based on multi-pass cell[J]. Advanced Proc. SPIE, 2010, 7853: 631-640.
[11] [11] Mount G H, Rumburg B, Havig J, et al. Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet[J]. Atmospheric Environment, 2002, 36(11): 1799-1810.
[12] [12] Claps R, Englich F V, Leleux D P, et al. Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy[J]. Appl. Opt., 2001, 40(24): 4387-4394.
[13] [13] Huszr H, Pogny A, Bozóki Z, et al. Ammonia monitoring at PPB level using photoacoustic spectroscopy for environmental application[J]. Sensors and Actuators B: Chemical, 2008, 134(2): 1027-1033.
[14] [14] Fonollosa J, Halford B, Fonseca L, et al. Ethylene optical spectrometer for apple ripening monitoring in controlled atmosphere store-houses[J]. Sensors and Actuators B: Chemical, 2009, 136(2): 546-554.
[15] [15] McManus J B, Shorter J H, Nelson D D, et al. Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air[J]. Appl. Phys. B, 2008, 92(3): 387-392.
[16] [16] Lee C, Choi Y J, Jung J S, et al. Measurement of atmospheric monoaromatic hydrocarbons using differential optical absorption spectroscopy: Comparison with on-line gas chromatography measurements in urban air[J]. Atmospheric Environment, 2005, 39(12): 2225-2234.
[17] [17] Chen W, Cazier F, Tittel F, et al. Measurements of benzene concentration by difference-frequency laser absorption spectroscopy[J]. Appl. Opt., 2000, 39(33): 6238-6242.
[18] [18] Fetzer G J, Pittner A S, Ryder W L, et al. Tunable diode laser absorption spectroscopy in coiled hollow optical waveguides[J]. Appl. Opt., 2002, 41(18): 3613-3621.
[19] [19] Kasyutich V L, Martin P A. Multipass optical cell based upon two cylindrical mirrors for tunable diode laser absorption spectroscopy[J]. Appl. Phys. B, 2007, 88(1): 125-130.
[20] [20] McNeal M P, Moelders N, Pralle M U, et al. Development of optical MEMS CO2 sensors[J]. Proc. SPIE, 2002, 4815: 30-35.
[21] [21] Vargas-Rodríguez E, Rutt H N. Design of CO, CO2 and CH4 gas sensors based on correlation spectroscopy using a Fabry-Perot interferometer[J]. Sensors and Actuators B: Chemical, 2009, 137(2): 410-419.
[22] [22] Aleksandrov S E, Gavrilov G A, Kapralov A A, et al. Simulation of characteristics of optical gas sensors based on diode optopairs operating in the mid-IR spectral range[J]. Technical Phys., 2009, 54(6): 874-881.
[23] [23] Kim S S, Menegazzo N, Young C, et al. Mid-infrared trace gas analysis with single-pass Fourier transform infrared hollow waveguide gas sensors[J]. Appl. Spectroscopy, 2009, 63(3): 331-337.
[24] [24] Engelbrecht R. A compact NIR fiber-optic diode laser spectrometer for CO and CO2: Analysis of observed 2f wavelength modulation spectroscopy line shapes[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(14): 3291-3298.
[25] [25] Thorpe M J, Balslev-Clausen D, Kirchner M S, et al. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis[J]. Opt. Express, 2008, 16(4): 2387-2397.
[26] [26] Barron-Jimenez R, Caton J A, Anderson T N, et al. Application of a difference-frequency-mixing based diode-laser sensor for carbon monoxide detection in the 4.4~4.8μm spectral region[J]. Appl. Phys. B, 2006, 85(2): 185-197.
[27] [27] Lancaster D G, Richter D, Curl R F, et al. Real-time measurements of trace gases using a compact difference-frequency-based sensor operating at 3.5μm[J]. Appl. Phys. B: Lasers & Optics, 1998, 67(3): 339-345.
[28] [28] Massie C, Stewart G, McGregor G, et al. Design of a portable optical sensor for methane gas detection[J]. Sensors and Actuators B: Chemical, 2006, 113(2): 830-836.
[29] [29] Gurlit W, Zimmermann R, Giesemann C, et al. Lightweight diode laser spectrometer CHILD (Compact High-altitude In-situ Laser Diode) for balloonborne measurements of water vapor and methane[J]. Appl. Opt., 2005, 44(1): 91-102.
[30] [30] Richard E C, Kelly K K, Winkler R H, et al. A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH4 in the upper troposphere and lower stratosphere[J]. Appl. Phys. B, 2002, 75(2): 183-194.
[31] [31] Alexandrov S E, Gavrilov G A, Kapralov A A, et al. Portable optoelectronic gas sensors operating in the mid-IR spectral range (lambda=3~5μm)[J]. Proc. SPIE, 2002, 4680: 188-194.
[32] [32] Dooly G, Fitzpatrick C, Lewis E. Deep UV based DOAS system for the monitoring of nitric oxide using ratiometric separation techniques[J]. Sensors and Actuators B: Chemical, 2008, 134(1): 317-323.
[33] [33] Sonnenfroh D M, Allen M G. Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8μm room-temperature diode laser[J]. Appl. Opt., 1997, 36(30): 7970-7977.
[34] [34] Sonnenfroh D M, Rawlins W T, Allen M G, et al. Application of balanced detection to absorption measurements of trace gases with room-temperature, quasi-CW quantum-cascade lasers[J]. Appl. Opt., 2001, 40(6): 812-820.
[35] [35] McManus J B, Nelson D D, Herndon S C, et al. Comparison of CW and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900cm-1[J]. Appl. Phys. B, 2006, 85(2): 235-241.
[36] [36] Crowder J G, Hardaway H R, Elliott C T. Mid-infrared gas detection using optically immersed, room-temperature, semiconductor devices[J]. Measurement Science and Technol., 2002, 13(6): 882-884.
[37] [37] Cheng A Y S, Chan M H. Acousto-optic differential optical absorption spectroscopy for atmospheric measurement of nitrogen dioxide in Hong Kong[J]. Appl. Spectroscopy, 2004, 58(12): 1462-1468.
[38] [38] Sonnenfroh D M, Allen M G. Ultrasensitive, visible tunable diode laser detection of NO2[J]. Appl. Opt., 1996, 35(21): 4053-4058.
[39] [39] Reid J, El-Sherbiny M, Garside B K, et al. Sensitivity limits of a tunable diode laser spectrometer, with application to the detection of NO2 at the 100-PPT level[J]. Appl. Opt., 1980, 19(19): 3349-3354.
[40] [40] Lou X T, Somesfalean G, Zhang Z G, et al. Sulfur dioxide measurements using an ultraviolet light-emitting diode in combination with gas correlation techniques[J]. Appl. Phys. B, 2009, 94(4): 699-704.
[41] [41] Rawlins W T, Hensley J M, Sonnenfroh D M, et al. Quantum cascade laser sensor for SO2 and SO3 for application to combustor exhaust streams[J]. Appl. Opt., 2005, 44(31): 6635-6643.
[42] [42] Levenson M D, Paldus B A, Spence T G, et al. Optical heterodyne detection in cavity ring-down spectroscopy[J]. Chemical Phys. Lett., 1998, 290(4/6): 335-340.
[43] [43] Lou X T, Somesfalean G, Zhang Z G, et al. Sulfur dioxide measurements using an ultraviolet light-emitting diode in combination with gas correlation techniques[J]. Appl. Phys. B, 2009, 94(4): 699-704.
[44] [44] Smith S D, Hardaway H R, Crowder J G. Recent developments in the applications of mid-infrared lasers, LEDs, and other solid state sources to gas detection[J]. Proc. SPIE, 2002, 4651: 157-172.
[45] [45] Chan K, Ito H, Inaba H, et al. 10km-long fibre-optic remote sensing of CH4 gas by near infrared absorption[J]. Appl. Phys. B, 1985, 38(1): 11-15.
[46] [46] Spannhake J, Schulz O, Helwig A, et al. Design, development and operational concept of an advanced MEMS IR source for miniaturized gas sensor systems[C]// Proc. of IEEE Sensors(2005), 2005: 762-765.
[47] [47] Van Campenhout J, Liu L, Romeo P R, et al. A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks[J]. IEEE Photon. Technol. Lett., 2008, 20(16): 1345-1347.
[48] [48] Jasek K, Puton J, Siodlowski B, et al. Platinum-black coatings for infrared emitters[J]. Proc. SPIE, 2003, 5124: 92-95.
[49] [49] McNeal M P, Moelders N, Pralle M U, et al. Development of optical MEMS CO2 sensors[J]. Proc. SPIE, 2002, 4815: 30-35.
[50] [50] Liu W, Ming A, Tan Z, et al. Development of MEMS IR source by compound release process with nano-scale silicon forest radiation layer[C]// Proc. IEEE Sensors(2016), 2016: 1-3.
[51] [51] Sandner T, Grasshoff T, Gaumont E, et al. Translatory MOEMS actuator and system integration for miniaturized Fourier transform spectrometers[J]. J. of Micro/Nanolithography, MEMS, and MOEMS, 2014, 13(1): 011115-1-011115-13.
[52] [52] Chu H M, Hane K. Design, fabrication and vacuum operation characteristics of two-dimensional comb-drive micro-scanner[J]. Sensors and Actuators A: Physical, 2011, 165(2): 422-430.
[53] [53] Hofmann U, Janes J, Quenzer H J. High-Q MEMS resonators for laser beam scanning displays[J]. Micromachines, 2012, 3(2): 509-528.
[54] [54] Koh K H, Kobayashi T, Hsiao F L, et al. Characterization of piezoelectric PZT beam actuators for driving 2D scanning micromirrors[J]. Sensors and Actuators A: Physical, 2010, 162(2): 336-347.
[56] [56] Ozdogan M, Daeichin M, Ramini A, et al. Parametric resonance of a repulsive force MEMS electrostatic mirror[J]. Sensors and Actuators A: Physical, 2017, 265: 20-31.
[58] [58] Chu P B, Lee S, Park S, et al. MOEMS: enabling technologies for large optical cross-connects[J]. Proc. SPIE, 2001, 4561: 55-65.
[59] [59] Aksyuk V A, Pardo F, Bolle C A, et al. Lucent Microstar micromirror array technology for large optical crossconnects[J]. Proc. SPIE, 2000, 4178: 320-324.
[60] [60] Toshiyoshi H, Fujita H. Electrostatic micro torsion mirrors for an optical switch matrix[J]. J. Microelectromechanical Systems, 1996, 5(4): 231-237.
[61] [61] Haffner C, Joerg A, Doderer M, et al. Nano-opto-electro-mechanical switches operated at CMOS-level voltages[J]. Science, 2019, 366(6467): 860-864.
[62] [62] Yang Z, Albrow-Owen T, Cai W, et al. Miniaturization of optical spectrometers[J]. Science, 2021, 371(6528): 0722.
[63] [63] Kwa T A, Wolffenbuttel R F. Integrated grating/detector array fabricated in silicon using micromachining techniques[J]. Sensors and Actuators A: Physical, 1992, 31(1/3): 259-266.
[64] [64] Crocombe R A, Flanders D C, Atia W. Micro-optical instrumentation for process spectroscopy[J]. Proc. SPIE, 2004, 5591: 11-25.
[65] [65] Erfan M, Sabry Y M, Sakr M, et al. On-chip micro-electro-mechanical system Fourier transform infrared (MEMS FT-IR) spectrometer-based gas sensing[J]. Appl. Spectroscopy, 2016, 70(5): 897-904.
[66] [66] Salem A M, Sabry Y M, Fathy A, et al. Single MEMS chip enabling dual spectral-range infrared micro-spectrometer with optimal detectors[J]. Advanced Materials Technologies, 2021, 6(5): 2001013.
Get Citation
Copy Citation Text
CAI Weiming, REN Qingying, JIANG Yanhu, WEI Hongfei, PENG Junyue, CHANG Chunyun, XUE Mei. Advances in the Research on MOEMS Gas Sensing Technology[J]. Semiconductor Optoelectronics, 2022, 43(6): 1040
Special Issue:
Received: Nov. 19, 2022
Accepted: --
Published Online: Jan. 27, 2023
The Author Email: