Optics and Precision Engineering, Volume. 30, Issue 21, 2698(2022)

Nanosecond extreme ultraviolet radiation damage on thin film mirrors

Wenbin LI1... Shuhui LI1, Liuyang PAN1, Zhe ZHANG1, Chun XIE2, Qiushi HUANG1 and Zhanshan WANG1,* |Show fewer author(s)
Author Affiliations
  • 1Institute of Precision Optical Engineering, MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Shanghai Professional Technical Service Platform for Full-Spectrum and High-Performance Optical Thin Film Devices and Applications, School of Physics Science and Engineering, Tongji University, Shanghai200092, China
  • 2Sino-German College of Applied Sciences, Tongji University, Shanghai0009, China
  • show less
    References(55)

    [1] J ULLRICH, A RUDENKO, R MOSHAMMER. Free-electron lasers: new avenues in molecular physics and photochemistry. Annual Review of Physical Chemistry, 63, 635-660(2012).

    [2] [2] 2赵振堂, 王东, 殷立新, 等. 上海软X射线自由电子激光装置[J]. 中国激光, 2019, 46(1): 33-42. doi: 10.3788/cjl201946.0100004ZHAOZH T, WANGD, YINL X, et al. Shanghai soft X-ray free-electron laser facility[J]. Chinese Journal of Lasers, 2019, 46(1): 33-42. (in Chinese). doi: 10.3788/cjl201946.0100004

    [3] C BOSTEDT, S BOUTET, D M FRITZ et al. Linac Coherent Light Source: the first five years. Reviews of Modern Physics, 88(2016).

    [4] N S HUANG, H X DENG, B LIU et al. Features and futures of X-ray free-electron lasers. The Innovation, 2, 100097(2021).

    [5] H N CHAPMAN, P FROMME, A BARTY et al. Femtosecond X-ray protein nanocrystallography. Nature, 470, 73-77(2011).

    [6] [6] 6泮丙营, 叶茂, 封东来. X射线自由电子激光在物理学中的应用[J]. 物理, 2018, 47(7): 418-425.PANB Y, YEM, FENGD L. The application of X-ray free electron lasers in physics[J]. Physics, 2018, 47(7): 418-425. (in Chinese)

    [7] [7] 7张文凯, 孔庆宇, 翁祖谦. X射线自由电子激光在化学与能源材料科学中的应用[J]. 物理, 2018, 47(8): 504-514. doi: 10.7693/wl20180803ZHANGW K, KONGQ Y, WENGZ Q. Applications of femtosecond X-ray techniques in chemistry and energy materials science[J]. Physics, 2018, 47(8): 504-514. (in Chinese). doi: 10.7693/wl20180803

    [8] S P HAU-RIEGE, R A LONDON, R M BIONTA et al. Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5nm wavelength. Applied Physics Letters, 90, 173128(2007).

    [9] J CHALUPSKÝ, V HÁJKOVÁ, V ALTAPOVA et al. Damage of amorphous carbon induced by soft X-ray femtosecond pulses above and below the critical angle. Applied Physics Letters, 95(2009).

    [10] J GAUDIN, O PEYRUSSE, J CHALUPSKÝ et al. Amorphous to crystalline phase transition in carbon induced by intense femtosecond X-ray free-electron laser pulses. Physical Review B, 86(2012).

    [11] S P HAU-RIEGE, R A LONDON, R M BIONTA et al. Wavelength dependence of the damage threshold of inorganic materials under extreme-ultraviolet free-electron-laser irradiation. Applied Physics Letters, 95, 111104(2009).

    [12] A AQUILA, R SOBIERAJSKI, C OZKAN et al. Fluence thresholds for grazing incidence hard X-ray mirrors. Applied Physics Letters, 106, 241905(2015).

    [13] S P HAU-RIEGE, R A LONDON, A GRAF et al. Interaction of short X-ray pulses with low-Z X-ray optics materials at the LCLS free-electron laser. Optics Express, 18, 23933-23938(2010).

    [14] N STOJANOVIC, D VON DER LINDE, K SOKOLOWSKI-TINTEN et al. Ablation of solids using a femtosecond extreme ultraviolet free electron laser. Applied Physics Letters, 89, 241909(2006).

    [15] I A MAKHOTKIN, I MILOV, J CHALUPSKÝ et al. Damage accumulation in thin ruthenium films induced by repetitive exposure to femtosecond XUV pulses below the single-shot ablation threshold. JOSA B, 35, 2799-2805(2018).

    [16] T KOYAMA, H YUMOTO, Y SENBA et al. Damage study of optical substrates using 1-μm-focusing beam of hard X-ray free-electron laser. Journal of Physics: Conference Series, 463(2013).

    [17] C SVETINA, N MAHNE, L RAIMONDI et al. MagneDyn: the beamline for magneto dynamics studies at FERMI. Journal of Synchrotron Radiation, 23, 98-105(2016).

    [18] T KOYAMA, H YUMOTO, K TONO et al. Damage threshold investigation using grazing incidence irradiation by hard X-ray free electron laser, 8848, 186-192(2013).

    [19] I MILOV, I A MAKHOTKIN, R SOBIERAJSKI et al. Mechanism of single-shot damage of Ru thin films irradiated by femtosecond extreme UV free-electron laser. Optics Express, 26, 19665-19685(2018).

    [20] R FOLLATH, T KOYAMA, V LIPP et al. X-ray induced damage of B4C-coated bilayer materials under various irradiation conditions. Scientific Reports, 9, 2029(2019).

    [21] I MILOV, V ZHAKHOVSKY, D ILNITSKY et al. Two-level ablation and damage morphology of Ru films under femtosecond extreme UV irradiation. Applied Surface Science, 528, 146952(2020).

    [22] A FAENOV, T PIKUZ, M ISHINO et al. Soft X-ray laser ablation of metals and dielectrics, 10243, 98-107(2017).

    [23] M ISHINO, N A INOGAMOV, S TAMOTSU et al. Study of damage structure formation on aluminum film targets by picosecond soft X-ray laser ablation around threshold region. Applied Physics A, 124, 649(2018).

    [24] K MIKAMI, M ISHINO, T H DINH et al. Laser-induced damage thresholds and mechanism of silica glass induced by ultra-short soft X-ray laser pulse irradiation. Optics Letters, 45, 2435-2438(2020).

    [25] F BARKUSKY, C PETH, K MANN et al. Formation and direct writing of color centers in LiF using a laser-induced extreme ultraviolet plasma in combination with a Schwarzschild objective. Review of Scientific Instruments, 76, 105102(2005).

    [26] F BARKUSKY, A BAYER, S DÖRING et al. Damage threshold measurements on EUV optics using focused radiation from a table-top laser produced plasma source. Optics Express, 18, 4346-4355(2010).

    [27] Z ZHANG, W B LI, Q S HUANG et al. A table-top EUV focusing optical system with high energy density using a modified Schwarzschild objective and a laser-plasma light source. The Review of Scientific Instruments, 89, 103109(2018).

    [28] W B LI, Z ZHANG, L Y PAN et al. Table-top focused EUV optical system with high energy density and its application on EUV damage tests, 11035(2019).

    [29] L Y PAN, Z ZHANG, W B LI et al. Multiple pulses damage test on Mo/Si multilayer using table-top focused EUV optical system built at IPOE, 4(2020).

    [30] W B LI, L Y PAN, C L WANG et al. Multi-shot damage on Mo/Si multilayer induced by nanosecond EUV radiation. AIP Advances, 11(2021).

    [31] W B LI, C L WANG, L Y PAN et al. Damage study on B4C films using a table-top nanosecond EUV damage instrument, 11776, 109-116(2021).

    [32] L Y PAN, S H LI, J Y CAO et al. Ultrafast time-resolved pump-probe investigation of nanosecond extreme ultraviolet-light-induced damage dynamics on B4C/Ru nano-bilayer film. Nano Letters, 22, 5260-5268(2022).

    [33] F BARKUSKY, A BAYER, B FLÖTER et al. Damage and degradation of optics and sensors under intense EUV radiation from a table-top laser produced plasma source, 7504, 521-530(7504).

    [34] J CHALUPSKÝ, L JUHA, J KUBA et al. Characteristics of focused soft X-ray free-electron laser beam determined by ablation of organic molecular solids. Optics Express, 15, 6036-6043(2007).

    [35] J CHALUPSKÝ, T BURIAN, V HÁJKOVÁ et al. Fluence scan: an unexplored property of a laser beam. Optics Express, 21, 26363-26375(2013).

    [36] J L WU, R Z QI, Q S HUANG et al. Stress, roughness and reflectivity properties of sputter-deposited B4C coatings for X-ray mirrors. Chinese Physics Letters, 36, 21-25(2019).

    [37] [37] 37付恩刚, 庄大明, 张弓, 等. 工作气压对磁控溅射ZAO薄膜性能的影响[J]. 功能材料, 2003, 34(5): 543-545. doi: 10.3321/j.issn:1001-9731.2003.05.023FUE G, ZHUANGD M, ZHANGG, et al. Operation gas (argon) pressure dependence of the performances of ZAO thin films deposited by magnetron sputtering[J]. Journal of Functional Materials, 2003, 34(5): 543-545. (in Chinese). doi: 10.3321/j.issn:1001-9731.2003.05.023

    [38] [38] 38史新伟, 周强, 马群超, 等. 压强对直流磁控溅射TiN薄膜光学性能的影响[J]. 郑州大学学报(理学版), 2018, 50(4): 58-63. doi: 10.13705/j.issn.1671-6841.2018060SHIX W, ZHOUQ, MAQ CH, et al. Impact of pressure on the optical properties of TiN film prepared by DC magnetron sputtering[J]. Journal of Zhengzhou University (Natural Science Edition), 2018, 50(4): 58-63. (in Chinese). doi: 10.13705/j.issn.1671-6841.2018060

    [39] [39] 39冯秦旭, 齐润泽, 李文斌, 等. 涂硼中子探测器用B4C薄膜的应力和粘附力研究[J]. 红外与激光工程, 2019(S2): 74-80.FENGQ X, QIR Z, LIW B, et al. Stress and adhesion of B4C films for boron-coated neutron detectors[J]. Infrared and Laser Engineering, 2019(S2): 74-80. (in Chinese)

    [40] K M LEE, H J HAN, S CHOI et al. Effects of metal buffer layers on the hot filament chemical vapor deposition of nanostructured carbon films. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 21, 623(2003).

    [41] J J SWAB, C S MEREDITH, D T CASEM et al. Static and dynamic compression strength of hot-pressed boron carbide using a dumbbell-shaped specimen. Journal of Materials Science, 52, 10073-10084(2017).

    [42] T KOYAMA, H YUMOTO, T MIURA et al. Damage threshold of coating materials on X-ray mirror for X-ray free electron laser. Review of Scientific Instruments, 87(2016).

    [43] K TAMURA, Y OGASAKA, M NAITOU et al. Measurements of reflectivity of X-ray mirror for Suzaku satellite, 6266, 991-998(2006).

    [44] J GÜDDE, J HOHLFELD, J G MÜLLER et al. Damage threshold dependence on electron-phonon coupling in Au and Ni films. Applied Surface Science, 128, 40-45(1998).

    [45] A N SALAZAR. On thermal diffusivity. European Journal of Physics, 24, 351-358(2003).

    [47] U FLECHSIG, S SPIELMANN, V THOMINET et al. Mirror systems for SwissFEL, from concept to commissioning with x-rays, 2054(2019).

    [48] R FOLLATH, U FLECHSIG, C MILNE et al. Optical design of the ARAMIS-beamlines at SwissFEL. AIP Conference Proceedings, 1741(2016).

    [49] I MILOV, V LIPP, D ILNITSKY et al. Similarity in ruthenium damage induced by photons with different energies: from visible light to hard X-rays. Applied Surface Science, 501, 143973(2020).

    [50] S BAJT, J B ALAMEDA, T W J BARBEE et al. Improved reflectance and stability of Mo/Si multilayers. Optical engineering, 41, 1797-1804(2002).

    [51] A R KHORSAND, R SOBIERAJSKI, E LOUIS et al. Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposure. Optics Express, 18, 700-712(2010).

    [52] S BAUDACH, J BONSE, J KRÜGER et al. Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate. Applied Surface Science, 154/155, 555-560(2000).

    [53] S H KIM, I B SOHN, S JEONG. Ablation characteristics of aluminum oxide and nitride ceramics during femtosecond laser micromachining. Applied Surface Science, 255, 9717-9720(2009).

    [54] M F BECKER, R M WALSER. Damage Morphologies and Cumulative Behavior of Laser Damage on Single Crystal Metal Surfaces. Laser Induced Damage in Optical Materials: 1986.100 Barr Harbor Drive, 575-575-19(2959).

    [55] I NEDELCU, R W E VAN DE KRUIJS, A E YAKSHIN et al. Thermally enhanced interdiffusion in Mo∕Si multilayers. Journal of Applied Physics, 103(2008).

    [56] H TAKENAKA, T KAWAMURA, Y ISHII et al. Heat resistance of Mo/Si, MoSi2/Si, and Mo5Si3/Si multilayer soft X-ray mirrors. Journal of Applied Physics, 78, 5227-5230(1995).

    Tools

    Get Citation

    Copy Citation Text

    Wenbin LI, Shuhui LI, Liuyang PAN, Zhe ZHANG, Chun XIE, Qiushi HUANG, Zhanshan WANG. Nanosecond extreme ultraviolet radiation damage on thin film mirrors[J]. Optics and Precision Engineering, 2022, 30(21): 2698

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 15, 2022

    Accepted: --

    Published Online: Nov. 28, 2022

    The Author Email: WANG Zhanshan (wangzs@tongji.edu.cn)

    DOI:10.37188/OPE.20223021.2698

    Topics