Optics and Precision Engineering, Volume. 30, Issue 21, 2698(2022)
Nanosecond extreme ultraviolet radiation damage on thin film mirrors
[1] J ULLRICH, A RUDENKO, R MOSHAMMER. Free-electron lasers: new avenues in molecular physics and photochemistry. Annual Review of Physical Chemistry, 63, 635-660(2012).
[2] [2] 2赵振堂, 王东, 殷立新, 等. 上海软X射线自由电子激光装置[J]. 中国激光, 2019, 46(1): 33-42. doi: 10.3788/cjl201946.0100004ZHAOZH T, WANGD, YINL X, et al. Shanghai soft X-ray free-electron laser facility[J]. Chinese Journal of Lasers, 2019, 46(1): 33-42. (in Chinese). doi: 10.3788/cjl201946.0100004
[3] C BOSTEDT, S BOUTET, D M FRITZ et al. Linac Coherent Light Source: the first five years. Reviews of Modern Physics, 88(2016).
[4] N S HUANG, H X DENG, B LIU et al. Features and futures of X-ray free-electron lasers. The Innovation, 2, 100097(2021).
[5] H N CHAPMAN, P FROMME, A BARTY et al. Femtosecond X-ray protein nanocrystallography. Nature, 470, 73-77(2011).
[6] [6] 6泮丙营, 叶茂, 封东来. X射线自由电子激光在物理学中的应用[J]. 物理, 2018, 47(7): 418-425.PANB Y, YEM, FENGD L. The application of X-ray free electron lasers in physics[J]. Physics, 2018, 47(7): 418-425. (in Chinese)
[7] [7] 7张文凯, 孔庆宇, 翁祖谦. X射线自由电子激光在化学与能源材料科学中的应用[J]. 物理, 2018, 47(8): 504-514. doi: 10.7693/wl20180803ZHANGW K, KONGQ Y, WENGZ Q. Applications of femtosecond X-ray techniques in chemistry and energy materials science[J]. Physics, 2018, 47(8): 504-514. (in Chinese). doi: 10.7693/wl20180803
[8] S P HAU-RIEGE, R A LONDON, R M BIONTA et al. Damage threshold of inorganic solids under free-electron-laser irradiation at 32.5nm wavelength. Applied Physics Letters, 90, 173128(2007).
[9] J CHALUPSKÝ, V HÁJKOVÁ, V ALTAPOVA et al. Damage of amorphous carbon induced by soft X-ray femtosecond pulses above and below the critical angle. Applied Physics Letters, 95(2009).
[10] J GAUDIN, O PEYRUSSE, J CHALUPSKÝ et al. Amorphous to crystalline phase transition in carbon induced by intense femtosecond X-ray free-electron laser pulses. Physical Review B, 86(2012).
[11] S P HAU-RIEGE, R A LONDON, R M BIONTA et al. Wavelength dependence of the damage threshold of inorganic materials under extreme-ultraviolet free-electron-laser irradiation. Applied Physics Letters, 95, 111104(2009).
[12] A AQUILA, R SOBIERAJSKI, C OZKAN et al. Fluence thresholds for grazing incidence hard X-ray mirrors. Applied Physics Letters, 106, 241905(2015).
[13] S P HAU-RIEGE, R A LONDON, A GRAF et al. Interaction of short X-ray pulses with low-Z X-ray optics materials at the LCLS free-electron laser. Optics Express, 18, 23933-23938(2010).
[14] N STOJANOVIC, D VON DER LINDE, K SOKOLOWSKI-TINTEN et al. Ablation of solids using a femtosecond extreme ultraviolet free electron laser. Applied Physics Letters, 89, 241909(2006).
[15] I A MAKHOTKIN, I MILOV, J CHALUPSKÝ et al. Damage accumulation in thin ruthenium films induced by repetitive exposure to femtosecond XUV pulses below the single-shot ablation threshold. JOSA B, 35, 2799-2805(2018).
[16] T KOYAMA, H YUMOTO, Y SENBA et al. Damage study of optical substrates using 1-μm-focusing beam of hard X-ray free-electron laser. Journal of Physics: Conference Series, 463(2013).
[17] C SVETINA, N MAHNE, L RAIMONDI et al. MagneDyn: the beamline for magneto dynamics studies at FERMI. Journal of Synchrotron Radiation, 23, 98-105(2016).
[18] T KOYAMA, H YUMOTO, K TONO et al. Damage threshold investigation using grazing incidence irradiation by hard X-ray free electron laser, 8848, 186-192(2013).
[19] I MILOV, I A MAKHOTKIN, R SOBIERAJSKI et al. Mechanism of single-shot damage of Ru thin films irradiated by femtosecond extreme UV free-electron laser. Optics Express, 26, 19665-19685(2018).
[20] R FOLLATH, T KOYAMA, V LIPP et al. X-ray induced damage of B4C-coated bilayer materials under various irradiation conditions. Scientific Reports, 9, 2029(2019).
[21] I MILOV, V ZHAKHOVSKY, D ILNITSKY et al. Two-level ablation and damage morphology of Ru films under femtosecond extreme UV irradiation. Applied Surface Science, 528, 146952(2020).
[22] A FAENOV, T PIKUZ, M ISHINO et al. Soft X-ray laser ablation of metals and dielectrics, 10243, 98-107(2017).
[23] M ISHINO, N A INOGAMOV, S TAMOTSU et al. Study of damage structure formation on aluminum film targets by picosecond soft X-ray laser ablation around threshold region. Applied Physics A, 124, 649(2018).
[24] K MIKAMI, M ISHINO, T H DINH et al. Laser-induced damage thresholds and mechanism of silica glass induced by ultra-short soft X-ray laser pulse irradiation. Optics Letters, 45, 2435-2438(2020).
[25] F BARKUSKY, C PETH, K MANN et al. Formation and direct writing of color centers in LiF using a laser-induced extreme ultraviolet plasma in combination with a Schwarzschild objective. Review of Scientific Instruments, 76, 105102(2005).
[26] F BARKUSKY, A BAYER, S DÖRING et al. Damage threshold measurements on EUV optics using focused radiation from a table-top laser produced plasma source. Optics Express, 18, 4346-4355(2010).
[27] Z ZHANG, W B LI, Q S HUANG et al. A table-top EUV focusing optical system with high energy density using a modified Schwarzschild objective and a laser-plasma light source. The Review of Scientific Instruments, 89, 103109(2018).
[28] W B LI, Z ZHANG, L Y PAN et al. Table-top focused EUV optical system with high energy density and its application on EUV damage tests, 11035(2019).
[29] L Y PAN, Z ZHANG, W B LI et al. Multiple pulses damage test on Mo/Si multilayer using table-top focused EUV optical system built at IPOE, 4(2020).
[30] W B LI, L Y PAN, C L WANG et al. Multi-shot damage on Mo/Si multilayer induced by nanosecond EUV radiation. AIP Advances, 11(2021).
[31] W B LI, C L WANG, L Y PAN et al. Damage study on B4C films using a table-top nanosecond EUV damage instrument, 11776, 109-116(2021).
[32] L Y PAN, S H LI, J Y CAO et al. Ultrafast time-resolved pump-probe investigation of nanosecond extreme ultraviolet-light-induced damage dynamics on B4C/Ru nano-bilayer film. Nano Letters, 22, 5260-5268(2022).
[33] F BARKUSKY, A BAYER, B FLÖTER et al. Damage and degradation of optics and sensors under intense EUV radiation from a table-top laser produced plasma source, 7504, 521-530(7504).
[34] J CHALUPSKÝ, L JUHA, J KUBA et al. Characteristics of focused soft X-ray free-electron laser beam determined by ablation of organic molecular solids. Optics Express, 15, 6036-6043(2007).
[35] J CHALUPSKÝ, T BURIAN, V HÁJKOVÁ et al. Fluence scan: an unexplored property of a laser beam. Optics Express, 21, 26363-26375(2013).
[36] J L WU, R Z QI, Q S HUANG et al. Stress, roughness and reflectivity properties of sputter-deposited B4C coatings for X-ray mirrors. Chinese Physics Letters, 36, 21-25(2019).
[37] [37] 37付恩刚, 庄大明, 张弓, 等. 工作气压对磁控溅射ZAO薄膜性能的影响[J]. 功能材料, 2003, 34(5): 543-545. doi: 10.3321/j.issn:1001-9731.2003.05.023FUE G, ZHUANGD M, ZHANGG, et al. Operation gas (argon) pressure dependence of the performances of ZAO thin films deposited by magnetron sputtering[J]. Journal of Functional Materials, 2003, 34(5): 543-545. (in Chinese). doi: 10.3321/j.issn:1001-9731.2003.05.023
[38] [38] 38史新伟, 周强, 马群超, 等. 压强对直流磁控溅射TiN薄膜光学性能的影响[J]. 郑州大学学报(理学版), 2018, 50(4): 58-63. doi: 10.13705/j.issn.1671-6841.2018060SHIX W, ZHOUQ, MAQ CH, et al. Impact of pressure on the optical properties of TiN film prepared by DC magnetron sputtering[J]. Journal of Zhengzhou University (Natural Science Edition), 2018, 50(4): 58-63. (in Chinese). doi: 10.13705/j.issn.1671-6841.2018060
[39] [39] 39冯秦旭, 齐润泽, 李文斌, 等. 涂硼中子探测器用B4C薄膜的应力和粘附力研究[J]. 红外与激光工程, 2019(S2): 74-80.FENGQ X, QIR Z, LIW B, et al. Stress and adhesion of B4C films for boron-coated neutron detectors[J]. Infrared and Laser Engineering, 2019(S2): 74-80. (in Chinese)
[40] K M LEE, H J HAN, S CHOI et al. Effects of metal buffer layers on the hot filament chemical vapor deposition of nanostructured carbon films. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 21, 623(2003).
[41] J J SWAB, C S MEREDITH, D T CASEM et al. Static and dynamic compression strength of hot-pressed boron carbide using a dumbbell-shaped specimen. Journal of Materials Science, 52, 10073-10084(2017).
[42] T KOYAMA, H YUMOTO, T MIURA et al. Damage threshold of coating materials on X-ray mirror for X-ray free electron laser. Review of Scientific Instruments, 87(2016).
[43] K TAMURA, Y OGASAKA, M NAITOU et al. Measurements of reflectivity of X-ray mirror for Suzaku satellite, 6266, 991-998(2006).
[44] J GÜDDE, J HOHLFELD, J G MÜLLER et al. Damage threshold dependence on electron-phonon coupling in Au and Ni films. Applied Surface Science, 128, 40-45(1998).
[45] A N SALAZAR. On thermal diffusivity. European Journal of Physics, 24, 351-358(2003).
[47] U FLECHSIG, S SPIELMANN, V THOMINET et al. Mirror systems for SwissFEL, from concept to commissioning with x-rays, 2054(2019).
[48] R FOLLATH, U FLECHSIG, C MILNE et al. Optical design of the ARAMIS-beamlines at SwissFEL. AIP Conference Proceedings, 1741(2016).
[49] I MILOV, V LIPP, D ILNITSKY et al. Similarity in ruthenium damage induced by photons with different energies: from visible light to hard X-rays. Applied Surface Science, 501, 143973(2020).
[50] S BAJT, J B ALAMEDA, T W J BARBEE et al. Improved reflectance and stability of Mo/Si multilayers. Optical engineering, 41, 1797-1804(2002).
[51] A R KHORSAND, R SOBIERAJSKI, E LOUIS et al. Single shot damage mechanism of Mo/Si multilayer optics under intense pulsed XUV-exposure. Optics Express, 18, 700-712(2010).
[52] S BAUDACH, J BONSE, J KRÜGER et al. Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate. Applied Surface Science, 154/155, 555-560(2000).
[53] S H KIM, I B SOHN, S JEONG. Ablation characteristics of aluminum oxide and nitride ceramics during femtosecond laser micromachining. Applied Surface Science, 255, 9717-9720(2009).
[54] M F BECKER, R M WALSER. Damage Morphologies and Cumulative Behavior of Laser Damage on Single Crystal Metal Surfaces. Laser Induced Damage in Optical Materials: 1986.100 Barr Harbor Drive, 575-575-19(2959).
[55] I NEDELCU, R W E VAN DE KRUIJS, A E YAKSHIN et al. Thermally enhanced interdiffusion in Mo∕Si multilayers. Journal of Applied Physics, 103(2008).
[56] H TAKENAKA, T KAWAMURA, Y ISHII et al. Heat resistance of Mo/Si, MoSi2/Si, and Mo5Si3/Si multilayer soft X-ray mirrors. Journal of Applied Physics, 78, 5227-5230(1995).
Get Citation
Copy Citation Text
Wenbin LI, Shuhui LI, Liuyang PAN, Zhe ZHANG, Chun XIE, Qiushi HUANG, Zhanshan WANG. Nanosecond extreme ultraviolet radiation damage on thin film mirrors[J]. Optics and Precision Engineering, 2022, 30(21): 2698
Received: Jul. 15, 2022
Accepted: --
Published Online: Nov. 28, 2022
The Author Email: WANG Zhanshan (wangzs@tongji.edu.cn)