Optics and Precision Engineering, Volume. 31, Issue 23, 3490(2023)
Infrared and visible image fusion based on target enhancement and butterfly optimization
[1] [1] 胡建平, 郝梦云, 杜影, 等. 结构和纹理感知的Retinex融合红外与可见光图像[J]. 光学 精密工程, 2022, 30(24):3225-3238. doi: 10.37188/ope.20223024.3225HUJ P, HAOM Y, DUY, et al. Fusion of infrared and visible images via structure and texture-aware retinex[J]. Opt. Precision Eng., 2022, 30(24):3225-3238. (in Chinese). doi: 10.37188/ope.20223024.3225
[2] T ZHOU, Q LI, H L LU et al. GAN review: models and medical image fusion applications. Information Fusion, 91, 134-148(2023).
[3] [3] 王满利, 王晓龙, 张长森. 基于动态范围压缩增强和NSST的红外与可见光图像融合算法[J]. 光子学报, 2022, 51(9): 0910002. doi: 10.3788/gzxb20225109.0910002WANGM L, WANGX L, ZHANGCH S. Infrared and visible image fusion algorithm based on dynamic range compression enhancement and NSST[J]. Acta Photonica Sinica, 2022, 51(9): 0910002.(in Chinese). doi: 10.3788/gzxb20225109.0910002
[4] H LI, X J WU, S D TARIQ. Infrared and visible image fusion with ResNet and zero-phase component analysis. Infrared Physics & Technology, 102, 103039(2019).
[5] [5] 朱雯青, 汤心溢, 张瑞, 等. 基于边缘保持和注意力生成对抗网络的红外与可见光图像融合[J]. 红外与毫米波学报, 2021, 40(5):696-708. doi: 10.11972/j.issn.1001-9014.2021.05.017ZHUW Q, TANGX Y, ZHANGR, et al. Infrared and visible image fusion based on edge-preserving and attention generative adversarial network[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5):696-708. (in Chinese). doi: 10.11972/j.issn.1001-9014.2021.05.017
[6] [6] 陈永, 张娇娇, 王镇. 多尺度密集连接注意力的红外与可见光图像融合[J]. 光学 精密工程, 2022, 30(18):2253-2266. doi: 10.37188/ope.20223018.2253CHENY, ZHANGJ J, WANGZH. Infrared and visible image fusion based on multi-scale dense attention connection network[J]. Opt. Precision Eng., 2022, 30(18):2253-2266. (in Chinese). doi: 10.37188/ope.20223018.2253
[7] S HAO, T HE, B AN et al. VDFEFuse: a novel fusion approach to infrared and visible images. Infrared Physics & Technology, 121, 104048(2022).
[8] J W JIANG, L LIU, L P WANG et al. Fusion of visible and infrared images based on multiple differential gradients. Journal of Modern Optics, 67, 329-339(2020).
[9] D P BAVIRISETTI, R DHULI. Fusion of infrared and visible sensor images based on anisotropic diffusion and karhunen-loeve transform. IEEE Sensors Journal, 16, 203-209(2016).
[10] T ZHOU, Q R CHENG, H L LU et al. Deep learning methods for medical image fusion: a review. Computers in Biology and Medicine, 160, 106959(2023).
[11] G F LI, Y J LIN, X D QU. An infrared and visible image fusion method based on multi-scale transformation and norm optimization. Information Fusion, 71, 109-129(2021).
[12] J Y MA, Y MA, C LI. Infrared and visible image fusion methods and applications: a survey. Information Fusion, 45, 153-178(2019).
[13] Y LIU, X CHEN, Z F WANG et al. Deep learning for pixel-level image fusion: recent advances and future prospects. Information Fusion, 42, 158-173(2018).
[14] Y LIU, X CHEN, Z F WANG et al. FusionGAN: a generative adversarial network for infrared and visible image fusion. Information Fusion, 48, 11-26(2019).
[15] [15] 杨艳春, 高晓宇, 党建武, 等. 基于WEMD和生成对抗网络重建的红外与可见光图像融合[J]. 光学 精密工程, 2022, 30(3):320-330. doi: 10.37188/OPE.20223003.0320YANGY CH, GAOX Y, DANGJ W, et al. Infrared and visible image fusion based on WEMD and generative adversarial network reconstruction[J]. Opt. Precision Eng., 2022, 30(3):320-330. (in Chinese). doi: 10.37188/OPE.20223003.0320
[16] [16] 曹宇彤, 宦克为, 薛超, 等. 基于卷积神经网络结合NSCT的红外与可见光图像融合[J]. 红外技术, 2023, 45(4): 378-385.CAOY T, HUANK W, XUECH, et al. Infrared and visible image fusion based on CNN with NSCT[J]. Infrared Technology, 2023, 45(4): 378-385.(in Chinese)
[17] Q Q LI, G L HAN, P X LIU et al. A multilevel hybrid transmission network for infrared and visible image fusion. IEEE Transactions on Instrumentation and Measurement, 71, 1-14(2022).
[18] S HAO, T HE, X MA et al. NOSMFuse: an infrared and visible image fusion approach based on norm optimization and slime mold architecture. Applied Intelligence, 53, 5388-5401(2023).
[19] Y H LIU, H M YAN, S B GAO et al. Criteria to evaluate the fidelity of image enhancement by MSRCR. IET Image Processing, 12, 880-887(2018).
[20] [20] 崔晓荣, 沈涛, 黄建鲁, 等. FABEMD和改进局部能量窗口的红外中波和长波图像融合[J]. 光谱学与光谱分析, 2021, 41(7):2043-2049. doi: 10.3964/j.issn.1000-0593(2021)07-2043-07CUIX R, SHENT, HUANGJ L, et al. Inf rared mid-wave and long-wave image fusion based on FABEMD and improved local energy window[J]. Spectroscopy and Spectral Analysis, 2021, 41(7):2043-2049. (in Chinese). doi: 10.3964/j.issn.1000-0593(2021)07-2043-07
[21] I SHAMS, S MEKHILEF, K S TEY. Maximum power point tracking using modified butterfly optimization algorithm for partial shading, uniform shading, and fast varying load conditions. IEEE Transactions on Power Electronics, 36, 5569-5581(2021).
[22] T ALEXANDER. The TNO multiband image data collection. Data in Brief, 15, 249-251(2017).
[23] J Y LIU, X FAN, Z B HUANG et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection, 18, 5792-5801(2022).
[24] H XU, J Y MA, J J JIANG et al. U2Fusion: a unified unsupervised image fusion network. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 502-518(2022).
[25] Z Q ZHOU, B WANG, S LI et al. Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters. Information Fusion, 30, 15-26(2016).
[26] Y LIU, X CHEN, J CHENG et al. A medical image fusion method based on convolutional neural networks, 10-13(2017).
[27] Y ZHANG, Y LIU, P SUN et al. IFCNN: a general image fusion framework based on convolutional neural network. Information Fusion, 54, 99-118(2020).
[28] H LI, X J WU, J KITTLER. RFN-Nest: an end-to-end residual fusion network for infrared and visible images. Information Fusion, 73, 72-86(2021).
[29] H LI, X J WU. DenseFuse: a fusion approach to infrared and visible images. IEEE Transactions on Image Processing, 28, 2614-2623(2019).
[30] H LI, X J WU, T DURRANI. NestFuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models. IEEE Transactions on Instrumentation and Measurement, 69, 9645-9656(2020).
[31] [31] 杨艳春, 李娇, 王阳萍. 图像融合质量评价方法研究综述[J]. 计算机科学与探索, 2018, 12(7): 1021-1035. doi: 10.3778/j.issn.1673-9418.1710001YANGY CH, LIJ, WANGY P. Review of image fusion quality evaluation methods[J]. Journal of Frontiers of Computer Science & Technology, 2018, 12(7): 1021-1035.(in Chinese). doi: 10.3778/j.issn.1673-9418.1710001
[32] P N SUGANTHAN. Differential evolution: a survey of the state-of-the-art. IEEE Transactions on Evolutionary Computation, 15, 4-31(2011).
[33] J SENTHILNATH, S N OMKAR, V MANI. Clustering using firefly algorithm: performance study. Swarm and Evolutionary Computation, 1, 164-171(2011).
[34] G M MORRIS, D S GOODSELL, R S HALLIDAY et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19, 1639-1662(1998).
[35] J B PARK, K S LEE, J R SHIN et al. A particle swarm optimization for economic dispatch with nonsmooth cost functions. IEEE Transactions on Power Systems, 20, 34-42(2005).
Get Citation
Copy Citation Text
Shuai HAO, Tong LI, Xu MA, Tian HE, Xizi SUN, Jiahao LI. Infrared and visible image fusion based on target enhancement and butterfly optimization[J]. Optics and Precision Engineering, 2023, 31(23): 3490
Category:
Received: May. 13, 2023
Accepted: --
Published Online: Jan. 5, 2024
The Author Email: MA Xu (haoxust@163.com)