Journal of Inorganic Materials, Volume. 39, Issue 6, 623(2024)
[3] JIANG Y, HU C L, LIANG B et al. Cyclic ablation resistance at 2300 ℃ of (Hf0.4Zr0.4Ta0.2)B2-SiC-Si coating for C/SiC composites prepared by SiC-assisted reactive infiltration of silicon[J]. Surface & Coatings Technology, 451: 129072(2022).
[4] TANG P J, HU C L, PANG S Y et al. Self-densifcation behavior, interfacial bonding and cyclic ablation resistance of HfSi2-ZrSi2 modified SiC/ZrB2-SiC/SiC coating for Cf/SiC composite[J]. Corrosion Science, 219: 111223(2023).
[5] TANG P J, HU C L, PANG S Y et al. Interfacial modification and cyclic ablation behaviors of a SiC/ZrB2-SiC/SiC triple-layer coating for C/SiC composites at above 2000 ℃[J]. Corrosion Science.
[9] SHEN X Y, MA Q, XUE Y D et al. Effects of multilayered interfaces on mechanical damage of SiCf/SiC composites[J]. Journal of Inorganic Materials, 38, 917(2023).
[10] JI S Y, LIANG B, YANG B et al. Long-term oxidation behaviors and strength retention properties of self-healing SiCf/SiC-SiBCN composites[J]. Journal of the European Ceramic Society, 43, 1843(2023).
[11] YAO J J, PANG S Y, HU C L et al. Mechanical, oxidation and ablation properties of C/(C-SiC)CVI-(ZrC-SiC)PIP composites[J]. Corrosion Science, 162: 108200(2020).
[14] PANG S Y, WANG P Y, HU C L et al. Carbon fiber preform's structure on mechanical property of C/C composites and bolts[J]. Journal of Inorganic Materials, 34, 1272(2019).
[17] SCITI D, ZOLI L, REIMER T et al. A systematic approach for horizontal and vertical scale up of sintered ultra-high temperature ceramic matrix composites for aerospace-advances and perspectives[J]. Composites Part B: Engineering, 234: 109709(2022).
[18] ZHAO R D, PANG S Y, LIANG B et al. Comparative ablation behaviors of C/SiC-ZrC and C/SiC-HfC composites prepared by ceramization of carbon aerogel preforms[J]. Corrosion Science, 225: 111623(2023).
[21] YAO J J, LIANG B, HU C L et al. Pitch resin addition induced evolution of composition, microstructure and mechanical property of C/C-SiC-ZrC composites[J]. Journal of the European Ceramic Society, 42, 6412(2022).
[23] WANG Y X, TAN S H, JIANG D L. Research and development of reaction sintered silicon carbide[J]. Journal of Inorganic Materials, 19, 456(2004).
[24] MESSNER R P, CHIANG Y M. Liquid-phase reaction-bonding of silicon carbide using alloyed silicon-molybdenum melts[J]. Journal of the American Ceramic Society, 73, 1193(1990).
[25] CHIANG Y M, MESSNER R P, TERWILLIGER C D et al. Reaction-formed silicon carbide[J]. Materials Science and Engineering: A, 144, 63(1991).
[26] SINGH M, DICKERSON R M. Microstructure and mechanical properties of reaction-formed silicon carbide (RFSC) ceramics[J]. Materials Science and Engineering: A, 187, 183(1994).
[27] XU S J, QIAO G J, LI D C et al. Reaction forming of silicon carbide ceramic using phenolic resin derived porous carbon preform[J]. Journal of the European Ceramic Society, 29, 2395(2009).
[28] SINGH M, DICKERSON R M. Characterization of SiC fiber (SCS-6) reinforced-reaction formed silicon carbide matrix composites[J]. Journal of Materials Research, 11, 746(1996).
[29] SINGH M, DICKERSON R M, OLMSTEAD F A et al. SiC (SCS-6) fiber reinforced-reaction formed SiC matrix composites: microstructure and interfacial properties[J]. Journal of Materials Research, 12, 706(1997).
[30] MAINZER B, RODER K, WÖCKEL L et al. Development of wound SiCBN
[31] ZHONG Q, ZHANG X Y, DONG S M et al. Reactive melt infiltrated Cf/SiC composites with robust matrix derived from novel engineered pyrolytic carbon structure[J]. Ceramics International, 43, 5832(2017).
[33] ZHANG J M, CHEN XW, LIAO C J et al. Optimizing microstructure and properties of SiCf/SiC composites prepared by reactive melt infiltration[J]. Journal of Inorganic Materials, 36, 1103(2021).
[34] GUO G D, YE F, CHENG L F et al. A novel porous carbon synthesized to serve in the preparation of highly dense and high-strength SiC/SiC by reactive melt infiltration[J]. Composites Part A: Applied Science and Manufacturing, 176: 107839(2024).
[35] LIU Z D, WANG Y L, XIONG X et al. Structural optimization and air-plasma ablation behaviors of C/C-SiC-(Zr
[39] ZHAO R D, PANG S Y, HU C L et al. Fabrication of C/SiC composites by siliconizing carbon fiber reinforced nanoporous carbon matrix preforms and their properties[J]. Journal of the European Ceramic Society, 43, 273(2023).
[40] WU Y, ZHAO R D, LIANG B et al. Construction of C/SiC-Cu3Si-Cu interpenetrating composites for long-duration thermal protection at 2500 ℃ by cooperative active-passive cooling[J]. Composites Part B: Engineering, 266: 111015(2023).
[41] SINGH M, DICKERSON R M. Reactive melt infiltration of silicon-molybdenum alloys into microporous carbon preforms[J]. Materials Science and Engineering: A, 194, 193(1995).
[42] SINGH M. Joining of sintered silicon carbide ceramics for high-temperature applications[J]. Journal of materials science letters, 17, 459(1998).
[43] WANG Y X, TAN S H, JIANG D L. The effect of porous carbon preform and the infiltration process on the properties of reaction-formed SiC.[J]. Carbon, 42, 1833(2004).
[44] WANG Y X, TAN S H, JIANG D L. The fabrication of reaction- formed silicon carbide with controlled microstructure by infiltrating a pure carbon preform with molten Si.[J]. Ceramics International, 30, 435(2004).
[45] XU S J, QIAO G J, WANG H J et al. Preparation of mesoporous carbon by phenol resin polymerization-dependent phase separation and pyrolysis[J]. Journal of Inorganic Materials, 23, 971(2008).
[47] XU S J, QIAO G J, WANG H J et al. Microstructure evolution and reaction mechanism of microporous carbon derived SiC ceramic[J]. Journal of Inorganic Materials, 24, 291(2009).
[50] WU X S, ZHU Y Z, HUANG Q et al. Effect of pore structure of organic resin-based porous carbon on joining properties of Cf/SiC composites[J]. Journal of Inorganic Materials, 37, 1275(2022).
[51] ZHANG K Y, ZHAO R D, YANG Y Q et al. Capillary infiltration of liquid silicon in carbon nanotubes: a molecular dynamics simulation[J]. Journal of Materials Science & Technology, 144: 219(2023).
[52] ZHAO R D, HU C L, WANG Y H et al. Construction of sandwich-structured C/C-SiC and C/C-SiC-ZrC composites with good mechanical and anti-ablation properties[J]. Journal of the European Ceramic Society, 42, 1219(2022).
[53] WANG D K, DONG S M, ZHOU H J et al. Fabrication and microstructure of 3D Cf/ZrC-SiC composites: through RMI method with ZrO2 powders as pore-making agent[J]. Ceramics International, 42, 6720(2016).
[54] NI D W, WANG J X, DONG S M et al. Fabrication and properties of Cf/ZrC-SiC-based composites by an improved reactive melt infiltration[J]. Journal of the American Ceramic Society, 101, 3253(2018).
[56] CHEN X W, NI D W, KAN Y M et al. Reaction mechanism and microstructure development of ZrSi2 melt-infiltrated Cf/SiC-ZrC- ZrB2 composites: the influence of preform pore structures[J]. Journal of Materiomics, 4, 266(2018).
[57] MAGNANT J, MAILLÉ L, PAILLER R et al. Carbon fiber/reaction-bonded carbide matrix for composite materials- manufacture and characterization[J]. Journal of the European Ceramic Society, 32, 4497(2012).
[58] GAO Y Q, LIU Y S, WANG J et al. Formation mechanism of Si-Y-C ceramic matrix by reactive melt infiltration using Si-Y alloy and properties of C/Si-Y-C composites[J]. Ceramics International, 46, 18976(2020).
[60] GUO W J, HU J, FANG W et al. A novel strategy for rapid fabrication of continuous carbon fiber reinforced (TiZrHfNbTa)C high-entropy ceramic composites: high-entropy alloy
[61] HE H R, TANG J G, GUO W J et al. Microstructures and formation mechanism of continuous carbon fiber-reinforced (TiZrHfNbTa)C high-entropy ceramic composites fabricated
[62] GUO W J, BAI S X, YE Y C. Controllable fabrication and mechanical properties of C/C-SiC composites based on an electromagnetic induction heating reactive melt infiltration[J]. Journal of the European Ceramic Society, 41, 2347(2021).
[63] ZOU X G, NI D, CHEN B W et al. Fabrication and properties of Cf/Ta4HfC5-SiC composite via precursor infiltration and pyrolysis[J]. Journal of the American Ceramic Society, 104, 6601(2021).
[64] CAI F Y, NI D W, BAO W C et al. Ablation behavior and mechanisms of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2) C-SiC high-entropy ceramic matrix composites[J]. Composites Part B: Engineering, 243: 110177(2022).
Get Citation
Copy Citation Text
Rida ZHAO, Sufang TANG.
Category:
Received: Dec. 31, 2023
Accepted: --
Published Online: Jul. 31, 2024
The Author Email: Sufang TANG (sftang@imr.ac.cn)