Journal of the Chinese Ceramic Society, Volume. 52, Issue 7, 2316(2024)
Effect of Different Polysilicon Bonding Layers Doping Concentration on Properties of Separated Absorption Charge Multiplication Ge/Si Avalanche Photodiodes
[1] [1] SRINIVASAN S A, BERCIANO M, DE HEYN P, et al. 27 GHz silicon-contacted waveguide-coupled Ge/Si avalanche photodiode[J]. J Light Technol, 2020, 38(11): 3044-3050.
[2] [2] XIANG Y L, CAO H Z, LIU C Y, et al. High-speed waveguide Ge/Si avalanche photodiode with a gain-bandwidth product of 615??GHz[J]. Optica, 2022, 9(7): 762.
[3] [3] JI D, ERCAN B, BENSON G, et al. 60 A/W high voltage GaN avalanche photodiode demonstrating robust avalanche and high gain up to 525?K[J]. Appl Phys Lett, 2020, 116(21): 211102.
[4] [4] LIANG Y, XU B, FEI Q L, et al. Low-timing-jitter GHz-gated InGaAs/InP single-photon avalanche photodiode for LIDAR[J]. IEEE J Sel Top Quantum Electron, 2022, 28(2: Optical Detectors): 3801807.
[5] [5] FAN Y B, SHI T T, JI W J, et al. Ultra-narrowband interference circuits enable low-noise and high-rate photon counting for InGaAs/InP avalanche photodiodes[J]. Opt Express, 2023, 31(5): 7515-7522.
[6] [6] CHUANG L C, SEDGWICK F G, CHEN R, et al. GaAs-based nanoneedle light emitting diode and avalanche photodiode monolithically integrated on a silicon substrate[J]. Nano Lett, 2011, 11(2): 385-390.
[7] [7] YUAN Y, HUANG Z H, ZENG X G, et al. High responsivity Si-Ge waveguide avalanche photodiodes enhanced by loop reflector[J]. IEEE J Sel Top Quantum Electron, 2022, 28(2: Optical Detectors): 3800508.
[8] [8] LIU X B, LI X T, LI Y X, et al. Three-terminal germanium-on-silicon avalanche photodiode with extended p-charge layer for dark current reduction[J]. Photon Res, 2022, 10(8): 1956.
[9] [9] WANG B H, MU J F. High-speed Si-Ge avalanche photodiodes[J]. PhotoniX, 2022, 3(1): 8.
[10] [10] KE S Y, XIAO X T, JIAO J L, et al. Theoretical achievement of THz gain-bandwidth product of wafer-bonded InGaAs/Si avalanche photodiodes with poly-Si bonding layer[J]. IEEE Trans Electron Devices, 2022, 69(3): 1123-1128.
[11] [11] DAS R, XIE Y R, FRANKIS H, et al. Gain-enabled optical delay readout unit using CMOS-compatible avalanche photodetectors[J]. Photon Res, 2022, 10(10): 2422.
[12] [12] KANNAN H, STAVRO J, MUKHERJEE A, et al. Ultralow dark currents in avalanche amorphous selenium photodetectors using solution-processed quantum dot blocking layer[J]. ACS Photonics, 2020, 7(6): 1367-1374.
[13] [13] BENEDIKOVIC D, VIROT L, AUBIN G, et al. 40??Gbps heterostructure germanium avalanche photo receiver on a silicon chip[J]. Optica, 2020, 7(7): 775.
[14] [14] REN Y, VAN V. Ultrawide-band silicon microring avalanche photodiode with linear photocurrent-wavelength response[J]. Photon Res, 2021, 9(11): 2303.
[15] [15] SHI Y C, ZHANG Y, WAN Y T, et al. Silicon photonics for high-capacity data communications[J]. Photon Res, 2022, 10(9): A106.
[16] [16] WU W Z, LIU Z, ZHENG J, et al. Interface electric field confinement effect of high-sensitivity lateral Ge/Si avalanche photodiodes[J]. Tsinghua Sci Technol, 2019, 24(1): 1-8.
[17] [17] YUAN Y, SORIN W V, LIANG D, et al. Mechanisms of enhanced sub-bandgap absorption in high-speed all-silicon avalanche photodiodes[J]. Photon Res, 2023, 11(2): 337.
[18] [18] DAI D X, CHEN H W, BOWERS J E, et al. Resonant normal-incidence separate-absorption-charge-multiplication Ge/Si avalanche photodiodes[J]. Opt Express, 2009, 17(19): 16549-16557.
[19] [19] TIAN Y, DING W Q, FENG X Y, et al. High signal-noise ratio avalanche photodiodes with dynamic biasing technology for laser radar applications[J]. Opt Express, 2022, 30(15): 26484-26491.
[20] [20] LLIN L F, KIRDODA J, THORBURN F, et al. High sensitivity Ge-on-Si single-photon avalanche diode detectors[J]. Opt Lett, 2020, 45(23): 6406-6409.
[21] [21] XIANG Y L, CAO H Z, LIU C Y, et al. High-performance waveguide Ge/Si avalanche photodiode with a lateral separate-absorption-charge- multiplication structure[J]. Opt Express, 2022, 30(7): 11288-11297.
[22] [22] SRINIVASAN S A, LAMBRECHT J, GUERMANDI D, et al. 56 gb/s NRZ O-band hybrid BiCMOS-silicon photonics receiver using Ge/Si avalanche photodiode[J]. J Light Technol, 2021, 39(5): 1409-1415.
[23] [23] BENEDIKOVIC D, VIROT L, AUBIN G, et al. Silicon-germanium receivers for short-wave-infrared optoelectronics and communications[J]. Nanophotonics, 2021, 10(3): 1059-1079.
[24] [24] LISCHKE S, PECZEK A, MORGAN J S, et al. Ultra-fast germanium photodiode with 3-dB bandwidth of 265?GHz[J]. Nat Photonics, 2021, 15: 925-931.
[25] [25] LI Y X, LIU X B, LI X T, et al. Germanium-on-silicon avalanche photodiode for 1550 nm weak light signal detection at room temperature[J]. Chin Opt Lett, 2022, 20(6): 062501.
[26] [26] GHOSH M, BULKIN P, SILVA F, et al. Ultrathin Ge epilayers on Si produced by low-temperature PECVD acting as virtual substrates for III-V/c-Si tandem solar cells[J]. Sol Energy Mater Sol Cells, 2022, 236: 111535.
[27] [27] KE S Y, LI D K, CHEN S Y. A review: Wafer bonding of Si-based semiconductors[J]. J Phys D: Appl Phys, 2020, 53(32): 323001.
[28] [28] RAMANANDAN S P, TOMI? P, MORGAN N P, et al. Coherent hole transport in selective area grown Ge nanowire networks[J]. Nano Lett, 2022, 22(10): 4269-4275.
[29] [29] HUANG D L, JI R Y, YAO L Y, et al. Dislocation nucleation triggered by thermal stress during Ge/Si wafer bonding process at low annealing temperature[J]. Appl Surf Sci, 2021, 568: 150979.
[30] [30] LIU X B, LI X T, ZHI Z H, et al. Three-electrode germanium-on- silicon avalanche photodiode array[J]. Opt Lett, 2023, 48(7): 1846-1849.
[31] [31] YUAN Y, HUANG Z H, WANG B H, et al. 64 gbps PAM4 Si-Ge waveguide avalanche photodiodes with excellent temperature stability[J]. J Light Technol, 2020, 38(17): 4857-4866.
[32] [32] ZHANG F L, ZHANG X T, LI Z Y, et al. A new strategy for selective area growth of highly uniform InGaAs/InP multiple quantum well nanowire arrays for optoelectronic device applications[J]. Adv Funct Mater, 2022, 32(3): 2103057.
[33] [33] HSIN C L, CHOU C H. Buffer-free Ge/Si by rapid melting growth technique for separate absorption and multiplication avalanche photodetectors[J]. IEEE Electron Device Lett, 2019, 40(6): 945-948.
[34] [34] KE S Y, CHEN Z X, ZHOU J R, et al. Theoretical prediction of high-performance room-temperature InGaAs/Si single-photon avalanche diode fabricated by semiconductor interlayer bonding [J]. IEEE Trans Electron Devices, 2021, 68(4): 1694-1701.
Get Citation
Copy Citation Text
SU Xiaoping, LI Jiahui, WANG Zhanren, KE Shaoying. Effect of Different Polysilicon Bonding Layers Doping Concentration on Properties of Separated Absorption Charge Multiplication Ge/Si Avalanche Photodiodes[J]. Journal of the Chinese Ceramic Society, 2024, 52(7): 2316
Category:
Received: Sep. 28, 2023
Accepted: --
Published Online: Aug. 26, 2024
The Author Email: Shaoying KE (syke@mnnu.edu.cn)