Journal of Inorganic Materials, Volume. 37, Issue 5, 481(2022)

Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries

Yutong WANG1... Feifan ZHANG1, Naicai XU2, Chunxia WANG1, Lishan CUI1 and Guoyong HUANG1,* |Show fewer author(s)
Author Affiliations
  • 11. State Key Laboratory of Heavy Oil, College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
  • 22. School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
  • show less
    Figures & Tables(10)
    Potential-pH diagram of typical electrode materials
    Crystal structure of LiTi2(PO4)3[17]
    Schematical illustration of the fabrication process of lithium titranium phosphate nanowires (LTPNMs)[38]
    Schematic diagram of electrospinning (a), comparison of rate performance between LiTi2(PO4)3 fibers and particles (b)[24]
    Comparison chart of rate performance of four coated carbon sources
    Discharge capacity for successive cycling at different current densities (a), long-term cycling behavior at current densities of 4 and 6 A·g-1 (b) of LiTi2(PO4)3/C and LiTi1.8Sn0.2(PO4)3/C[24]
    • Table 1. Comparison of the characteristics of aqeuous and organic lithium-ion batteries[8]

      View table
      View in Article

      Table 1. Comparison of the characteristics of aqeuous and organic lithium-ion batteries[8]

      TypeOperating voltage/VSafetyElectrolyteSolventCost
      Organic Li-ion battery3.6-4.2LowLiPF6, LiAsF6, etcEC, DMC, DEC, etcHigh
      Aqeuous Li-ion battery1.5-2.0HighLi2SO4, LiNO3, etcH2OModerate
    • Table 2. Parameters of some anode materials for aqeuous lithium-ion battery[14]

      View table
      View in Article

      Table 2. Parameters of some anode materials for aqeuous lithium-ion battery[14]

      Anode materialSpecific capacity/ (mAh·g-1)Potential/V(vs. Li+/Li)Potential/V(vs. NHE)Features
      LiTi2(PO4)31382.5-0.5Moderate specific capacity, stable framework
      TiP2O71212.6-0.4Low specific capacity, high Li-intercalation potential
      VO22502.6-0.4High specific capacity, poor cycling performance
      LiV3O82502.6-0.4Fragile during cycling
    • Table 3. Comparison of common synthetic methods of LiTi2(PO4)3

      View table
      View in Article

      Table 3. Comparison of common synthetic methods of LiTi2(PO4)3

      MethodStarting materialsProduct characteristicFeaturesRef.
      Li sourceTi sourceP sourceMorphology
      Solid stateLiH2PO4TiO2NH4H2PO4Irregular particlesLong calcination time, high temperature[20]
      Sol-GelCH3COOLiTi(C4H9O)4H3PO4ParticlesShort calcination time, low temperature[21]
      Hydrothermal synthesisCH3COOLiTi(C4H9O)4NH4H2PO4Regular particlesRegular particle morphology, great crystallinity[22]
      Co-precipitation methodLiOHTi(C4H9O)4H3PO4ParticlesRequiring precise control[23]
      ElectrospinningCH3COOLiTi(C4H9O)4NH4H2PO4FiberIdeal electrochemical performance, difficult industrialization[24]
    • Table 4. Comparison of electrochemical performance of different carbon sources and coating methods by Sol-Gel

      View table
      View in Article

      Table 4. Comparison of electrochemical performance of different carbon sources and coating methods by Sol-Gel

      Calcination parameterCoating methodCarbon sourceWeight percentage of carbon/%Current density/(mA·g-1)Specific capacity (cycles)/(mAh·g-1)Capacity retention/%Ref.
      800 ℃-12 hIn-situCitric acid6.2138106.1(1)-89(1300)84[36]
      900 ℃-12 hEx-situToluene12700100(1)-83(200)83[31]
      800 ℃-12 hEx-situAcetylene Black18140106.3(1)-86.5(100)81[81]
      850 ℃-12 hEx-situAcetylene Black-140091.3(1)-74.4(100)81[82]
      700 ℃-12 hIn-situPitch17.51380107(1)-75.5(1000)70[83]
      550 ℃-24 hIn-situSucrose3.51400110(1)-104(800)94[17]
      750 ℃-5 hIn-situPolyaniline5.9276115.2(1)-94.6(1000)82[84]
      750 ℃-5 hIn-situPolyacrylonitrile5.969095(1)-82.1(1000)86[85]
      900 ℃-12 hIn-situGraphene oxide1.79~1380110(1)-100(100)91[78]
      800 ℃-10 hIn-situGraphene oxide-~276105(1)-97.86(100)93.2[77]
      700 ℃-5 hIn-situGraphene oxide, phenolic resin16.2~690101.1(1)-78(1000)77.2[80]
      800 ℃-8 hEx-situβ-Cyclodextrin3.13~690120(1)-(200)111.388.7[86]
    Tools

    Get Citation

    Copy Citation Text

    Yutong WANG, Feifan ZHANG, Naicai XU, Chunxia WANG, Lishan CUI, Guoyong HUANG. Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries[J]. Journal of Inorganic Materials, 2022, 37(5): 481

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: REVIEW

    Received: Aug. 13, 2021

    Accepted: --

    Published Online: Jan. 10, 2023

    The Author Email: HUANG Guoyong (huanggy@cup.edu.cn)

    DOI:10.15541/jim20210502

    Topics