Laser & Optoelectronics Progress, Volume. 56, Issue 6, 060005(2019)

Applications of Laser Surface Treatment Technologies in Petroleum Machinery

Junyuan Huang1, Zejun Shen1、*, Lixin Zhang1, Songbo Wei1, Yingying Yang2, Shijia Zhu1, Jie Qian1, and Lin Chen1
Author Affiliations
  • 1 Department of Petroleum Equipment, Petro China Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
  • 2 Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    Figures & Tables(11)
    Classification of laser surface treatment technologies
    Microstructures. (a) Laser hardened microstructure; (b) metallographic microstructure in laser hardened region; (c) boundary microstructure in laser hardened region; (d) metallographic phase in matrix microstructure
    Schematic of laser cladding process[44]
    Abrasion loss of laser cladding layer and 20CrMo matrix
    Relationship between Mo content and hardness of alloyed layer
    Schematic of laser shock[54]
    Influence of 45# steel surface texture on friction factor (52HRC)[36]
    Influences of laser parameters on pit diameter and depth. (a) Number; (b) speed; (c) power; (d) frequency
    • Table 1. Applications of laser surface treatment in petroleum machinery

      View table

      Table 1. Applications of laser surface treatment in petroleum machinery

      MachinepartTechnologyMaterialLaserPower /kWSpeed /(mm·s-1)Pre-processinghardnessPost-processinghardnessImprovedperformanceYear
      Hot rolledsteelLasercleaningQ235Nd∶YAG0.05-0.60HRC16Oxide layereffectivelyremoved2017[16]
      Lasercladding ofCu-Mnalloys45CO2Nano porouscoatingsuccessfullyprepared2011[17]
      PipeLaserquenching37CrMnMo21200HRC34HRC60Wearresistance/Hardeningdepth2015[19]
      BearingLaserquenching18CrNiMoCO21.155HRC11HRC65Hardness/Wear resistance2016[20]
      MudpumplinerLaserquenchinghigh-chromiumironCO22.517HRC47-52HRC107Wearresistance/Service life2017[21]
      GearLaserquenching20CrMnTiCO20.1516HRC52HRC62Wearresistance/Corrosionresistance2017[22]
      OilpumpLaserquenching/nitriding35CrMoACO2233HRC32HRC67Hardness/Wearresistance2010[23]
      Laserfusion/quenching42CrMoFiber1.53.3HRC31HRC59Hardness2011[24]
      BentaxleLasercladding ofFe base alloy45CO248.3HRC15HRC53Hardness2014[25]
      Laserquenching/nitriding30CrMnSiCO21HRC30HRC62Hardness/Thickness2015[26]
      BlowerrotorLasercladding ofNi basepowder40CrCO22HRC25Recovered2011[27]
      WaterpumpplungerLasercladding ofNi basepowder451.25HRC45HRC53Servicelife/Cost2017[28]
      SteamturbinecylinderLasercladding ofCo basepowder251.211.6Repaired2017[29]
      Lasercladding ofCaF2/NipowderQ235AFiber2.22.6HRC13HRC66Hardness2017[30]
      N80tubingLaseralloying ofalloypowderCO22.8~3.111.6HRC24HRC55Hardness/Corrosionresistance2017[31]
      ScrewLasernanoalloying40CrCO22~2.53.3~6.6HRC25HRC62Hardness/Service life2007[32]
      TurbinebladeLaseralloying ofalloypowder2Cr13CO23.3~6.6HRC25HRC60Hardness2007[33]
      Weldedjoint ofX80pipelineLasershockpeeningX80Nd∶YAGFatiguestrength2014[34]
      Dry gasseal ringLaserablationSiC/SiNiFiberFlexibleprocessing2013[35]
      Lasersurfacetexture45FiberHardness/Wearresistance2017[36]
    • Table 2. Comparison between laser quenching and other common surface quenching methods

      View table

      Table 2. Comparison between laser quenching and other common surface quenching methods

      QuenchingmethodHardenedlayerhardnessHardenedlayer wearresistanceHardenedlayer fatigueresistanceProductionefficiencyControllabilityProcessingcostDeformation
      LaserquenchingHigherBetterBetterHighHigherHighSmaller
      InductionhardeningHighGoodGoodHigherHighModerateSmall
      FlamehardeningLowerGoodGoodLowLowerLowerLarge
      PlasmaquenchingHigherBetterGoodHighLowerModerateSmaller
      Carburizing andquenchingHighGoodGoodHighHigherModerateSmaller
      Nitriding andquenchingHigherGeneralGeneralLowerHigherHighSmaller
      CarbonitridingHigherBetterBetterLowerHighHighSmaller
    • Table 3. Detection and comparison of dimensional limit deviations of ?73.02 mm N80 tubing before and after laser quenching[40]

      View table

      Table 3. Detection and comparison of dimensional limit deviations of ?73.02 mm N80 tubing before and after laser quenching[40]

      SampleNo.Name ofartifactTestitemAPI standardtoleranceLaser pre-quenchingtoleranceAppearanceLaserhardeningtoleranceAppearance
      2RYCollarinternalthreadTightness /mm4.85±3.815.68Qualified5.72Qualified
      Pitch deviation /(mm/25.4 mm)±0.076-0.02Qualified-0.02Qualified
      Taper /(mm·mm-1)62.5+5.208or 62.5-2.663.0Qualified63.0Qualified
      Depthdeviation /mm+0.050 or-0.102-0.02Qualified-0.02Qualified
      2RYAPipeoutsidethreadTightness /mm±3.810.80Qualified0.84Qualified
      Pitch deviation /(mm/25.4 mm)±0.076-0.013Qualified-0.013Qualified
      Taper /(mm·mm-1)62.5+5.208or 62.5-2.663.5Qualified63.5Qualified
      Depthdeviation /mm+0.050 or-0.102-0.02Qualified-0.02Qualified
    Tools

    Get Citation

    Copy Citation Text

    Junyuan Huang, Zejun Shen, Lixin Zhang, Songbo Wei, Yingying Yang, Shijia Zhu, Jie Qian, Lin Chen. Applications of Laser Surface Treatment Technologies in Petroleum Machinery[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Aug. 22, 2018

    Accepted: Oct. 10, 2018

    Published Online: Jul. 30, 2019

    The Author Email: Shen Zejun (zjshen@petrochina.com.cn)

    DOI:10.3788/LOP56.060005

    Topics