Acta Optica Sinica, Volume. 43, Issue 24, 2428001(2023)

New Rayleigh Doppler Lidar Based on Iodine Molecular Absorption Cell

Zhiqiang Tan1,2, Lingbing Bu1,2、*, and Bin Yang1,2
Author Affiliations
  • 1Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu , China
  • 2Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu , China
  • show less
    References(33)

    [1] Huang R H, Chen W, Wei K et al. Atmospheric dynamics in the stratosphere and its interaction with tropospheric processes: progress and problems[J]. Chinese Journal of Atmospheric Sciences, 42, 463-487(2018).

    [2] Lü D R, Bian J C, Chen H B et al. Frontiers and significance of research on stratospheric processes[J]. Advances in Earth Science, 24, 221-228(2009).

    [3] Yan Z A, Hu X, Guo W J et al. Near space Doppler lidar techniques and applications (invited)[J]. Infrared and Laser Engineering, 50, 20210100(2021).

    [4] Zhang N N, Zhao R C, Sun D S et al. Inertial gravity waves study with Rayleigh Doppler Lidar long-term observation[J]. Infrared and Laser Engineering, 49, 20230351(2020).

    [5] Baumgarten G. Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km[J]. Atmospheric Measurement Techniques, 3, 1509-1518(2010).

    [6] Khaykin S M, Hauchecorne A, Wing R et al. Doppler lidar at Observatoire de Haute-Provence for wind profiling up to 75 km altitude: performance evaluation and observations[J]. Atmospheric Measurement Techniques, 13, 1501-1516(2020).

    [7] Bu L B, Liu J Q, Chen W B. Effect of spectrum uncertainty for direct-detection Doppler wind lidar[J]. Acta Photonica Sinica, 36, 335-339(2007).

    [8] Pan Y S, Yan Z A, Guo W J et al. Pulse laser injection seeded state detector and experimental research[J]. Laser Technology, 40, 153-156(2016).

    [9] Zhang F F, Wang G C, Sun D S et al. Research on the radial velocity bias in Doppler wind lidar based on Fabry-Perot interferometer[J]. Chinese Journal of Lasers, 42, 0814002(2015).

    [10] Xia H Y, Dou X K, Shangguan M J et al. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar[J]. Optics Express, 22, 21775-21789(2014).

    [11] Fang Z Y, Zhao M, Yang H et al. Frequency tracking technology of direct wind lidar and observation of atmospheric wind field in troposphere and stratosphere[J]. Infrared and Laser Engineering, 52, 20220412(2023).

    [12] Yan Z A, Hu X, Guo W J et al. Development of a mobile Doppler lidar system for wind and temperature measurements at 30-70 km[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 188, 52-59(2017).

    [13] Shen H C, Wu S H, Qin S G et al. Frequency stability based on molecular absorption spectrum of single-frequency pulse laser[J]. Chinese Journal of Lasers, 41, 0902010(2014).

    [14] Wang C S, Zhang Y S, Zheng J L et al. Frequency-modulated continuous-wave dual-frequency LIDAR based on a monolithic integrated two-section DFB laser[J]. Chinese Optics Letters, 19, 111402(2021).

    [15] Zhuang W, Zhao Y, Wang S K et al. Ultranarrow bandwidth Faraday atomic filter approaching natural linewidth based on cold atoms[J]. Chinese Optics Letters, 19, 030201(2021).

    [16] Wang J T, Zhou J, Zang H G et al. Conductively cooled 250-Hz single frequency Nd∶YAG laser[J]. Chinese Optics Letters, 8, 670-672(2010).

    [17] Li S G, Ma X H, Li H H et al. Laser-diode-pumped zigzag slab Nd∶YAG master oscillator power amplifier[J]. Chinese Optics Letters, 11, 071402(2013).

    [18] Gao F, Gao F J, Yang X et al. Accurate measurement of aerosol optical properties using the multilongitudinal mode high-spectral-resolution lidar with self-tuning Mach-Zehnder interferometer[J]. Chinese Optics Letters, 21, 030101(2023).

    [19] Liu Z S, Chen Z, Yu C R et al. Doppler wind lidar: from vehicle-mounted to space-borne[J]. Journal of Atmospheric and Environmental Optics, 10, 126-138(2015).

    [20] Zhao M, Xie C B, Zhong Z Q et al. High spectral resolution lidar for measuring atmospheric transmission[J]. Infrared and Laser Engineering, 45, 130002(2016).

    [21] Gerstenkom S, Luc P. Description of the absorption spectrum of iodine recorded by means of Fourier Transform Spectroscopy: the (B-X) system[J]. Journal de Physique, 46, 867-881(1985).

    [22] Witschas B, Vieitez M O, van Duijn E J et al. Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air[J]. Applied Optics, 49, 4217-4227(2010).

    [23] Xu J Q, Witschas B, Kabelka P G et al. High-spectral-resolution lidar for measuring tropospheric temperature profiles by means of Rayleigh-Brillouin scattering[J]. Optics Letters, 46, 3320-3323(2021).

    [24] Korb C L, Gentry B M, Weng C Y. Edge technique: theory and application to the lidar measurement of atmospheric wind[J]. Applied Optics, 31, 4202-4213(1992).

    [25] Hauchecorne A, Chanin M. Density and temperature profiles obtained by lidar between 35 and 70 km[J]. Geophysical Research Letters, 7, 565-568(1980).

    [26] Che H, Xia X, Zhao H et al. Spatial distribution of aerosol microphysical and optical properties and direct radiative effect from the China Aerosol Remote Sensing Network[J]. Atmospheric Chemistry and Physics, 19, 11843-11864(2019).

    [27] Tackett J L, Winker D M, Getzewich B J et al. CALIPSO lidar level 3 aerosol profile product: version 3 algorithm design[J]. Atmospheric Measurement Techniques, 11, 4129-4152(2018).

    [28] Kar J, Lee K P, Vaughan M A et al. CALIPSO level 3 stratospheric aerosol profile product: version 1.00 algorithm description and initial assessment[J]. Atmospheric Measurement Techniques, 12, 6173-6191(2019).

    [29] Picone J M, Hedin A E, Drob D P et al. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues[J]. Journal of Geophysical Research: Space Physics, 107, SIA15-1(2002).

    [30] Collis R T H, Russell P B. Lidar measurement of particles and gases by elastic backscattering and differential absorption[M]. Hinkley E D. Laser monitoring of the atmosphere, 14, 71-151(1976).

    [31] Xu J Y, She C Y, Yuan W et al. Comparison between the temperature measurements by TIMED/SABER and lidar in the midlatitude[J]. Journal of Geophysical Research, 111, A10-09(2006).

    [32] Rüfenacht R, Baumgarten G, Hildebrand J et al. Intercomparison of middle-atmospheric wind in observations and models[J]. Atmospheric Measurement Techniques, 11, 1971-1987(2018).

    [33] Dou X K, Han Y L, Sun D S et al. Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere[J]. Optics Express, 22, A1203-A1221(2014).

    Tools

    Get Citation

    Copy Citation Text

    Zhiqiang Tan, Lingbing Bu, Bin Yang. New Rayleigh Doppler Lidar Based on Iodine Molecular Absorption Cell[J]. Acta Optica Sinica, 2023, 43(24): 2428001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Feb. 3, 2023

    Accepted: Mar. 12, 2023

    Published Online: Dec. 12, 2023

    The Author Email: Bu Lingbing (lingbingbu@nuist.edu.cn)

    DOI:10.3788/AOS230500

    Topics