Optics and Precision Engineering, Volume. 32, Issue 16, 2523(2024)

Progressive CNN-transformer semantic compensation network for polyp segmentation

Daxiang LI, Denghui LI*, Ying LIU, and Yao TANG
Author Affiliations
  • College of Communication and Information Engineering,Xi′an University of Posts and Telecommunication,Xi′an710121,China
  • show less
    References(39)

    [1] WORLD HEALTH ORGANIZATION. International agen-cy for research on cancer[J](2023).

    [2] [2] 中华医学会肿瘤学分会早诊早治学组. 中国结直肠癌早诊早治专家共识(2023版)[J]. 中华医学杂志, 2023, 103(48): 3896-3908.Expert consensus on the early diagnosis and treatment of colorectal cancer in China (2023 edition)[J]. National Medical Journal of China, 2023, 103(48): 3896-3908.(in Chinese)

    [3] SIEGEL R L, WAGLE N S, CERCEK A et al. Colorectal cancer statistics, 2023[J]. CA: A Cancer Journal for Clinicians, 73, 233-254(2023).

    [4] [4] 孙福艳, 王琼, 吕宗旺, 等. 深度学习在结肠息肉分割中的应用综述[J]. 计算机工程与应用, 2023, 59(23): 15-27.SUNF Y, WANGQ, (LÜ/LV/LU/LYU)Z W, et al. Review of application of deep learning in colon polyp segmentation[J]. Computer Engineering and Applications, 2023, 59(23): 15-27.(in Chinese)

    [5] FAN D P, JI G P, ZHOU T et al. Pranet: Parallel Reverse Attention Network for Polyp Segmentation[C], 263-273(2020).

    [6] TOMAR N K, BAGCI U et al. Tganet: Text-Guided Attention for Improved Polyp Segmentation[C], 151-160(2022).

    [7] YUE G H, HAN W W, JIANG B et al. Boundary constraint network with cross layer feature integration for polyp segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 26, 4090-4099(2022).

    [8] YIN Z J, LIANG K M, MA Z Y et al. Duplex Contextual Relation Network for Polyp Segmentation[C], 1-5(2022).

    [9] ZHOU T, ZHOU Y, HE K L et al. Cross-level feature aggregation network for polyp segmentation[J]. Pattern Recognition, 140, 109555(2023).

    [10] WANG J F, HUANG Q M, TANG F L et al. Stepwise Feature Fusion: Local Guides Global[C], 110-120(2022).

    [11] [11] 周雪,柏正尧,陆倩杰,等. 融合Transformer和轴向注意的结直肠息肉分割[J]. 计算机工程与应用, 2023, 59(11): 222-230.ZHOUX, BAIZ Y, LUQ J, et al. Colorectal polyp segm-entation combining pyramid vision transformer and axial attention[J]. Computer Engineering and Applications, 2023, 59(11): 222-230. (in Chinese)

    [12] [12] 梁礼明, 何安军, 董信, 等. 融合PVTv2和多尺度边界聚合的结直肠息肉分割算法[J]. 计算机应用研究, 2023, 40(5): 1553-1558.LIANGL M, HEA J, DONGX, et al. Colorectal polyp segmentation algorithm fusion PVTv2 and multiscale boundary aggregation[J]. Application Research of Computers, 2023, 40(5): 1553-1558.(in Chinese)

    [13] ZHANG Y D, LIU H Y, HU Q. Transfuse: fusing transformers and cnns for medical image segmentation[C], 14-24(2021).

    [14] SANDERSON E, MATUSZEWSKI B J. FCN-Transformer feature fusion for polyp segmentation[C], 892-907(2022).

    [15] KIM T, LEE H, KIM D. UACANet: Uncertainty augmented context attention for polyp segmentation[C], 2167-2175(2021).

    [16] LI H, YANG L, MIAO J et al. MCE-Net: polyp segmentation with multiple branch series-parallel attention and channel interaction via edge distribution guidance[J]. Physics in Medicine &, 68, 135003(2023).

    [17] XIE E, WANG W, YU Z et al. SegFormer: Simple and efficient design for semantic segmentation with transfor-mers[J]. Advances in neural information processing systems, 34, 12077-12090(2021).

    [18] TAN M, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks[C], 6105-6114(2019).

    [19] LEE C Y, XIE S, GALLAGHER P et al. Deeply-supervised nets[C], 562-570(2015).

    [20] PENG Y J, ZHANG T, GUO Y F. Cov-TransNet: dual branch fusion network with transformer for COVID-19 infection segmentation[J]. Biomedical Signal Processing and Control, 80, 104366(2023).

    [21] LIU Q H, LIN Y J, HAN X X et al. Dual-branch feature extraction network combined with Transformer and CNN for polyp segmentation[J]. International Journal of Imaging Systems and Technology, 34, e22987(2024).

    [22] FU J, LIU J, TIAN H J et al. Dual Attention Network For Scene Segmentation[C], 3141-3149(2019).

    [23] XIA Y, YUN H J, LIU Y J et al. MGCBFormer: the multiscale grid-prior and class-inter boundary-aware transformer for polyp segmentation[J]. Computers in Biology and Medicine, 167, 107600(2023).

    [24] SRIVASTAVA A, CHANDA S et al. GMSRF-Net: an improved generalizability with global multi-scale residual fusion network for polyp segmentation[C], 4321-4327(2022).

    [25] CHANG Q, AHMAD D, TOTH J et al. ESFPNet: efficient deep learning architecture for real-time lesion segmentation in autofluorescence bronchoscopic video[C], 19, 2023(2023).

    [26] CARION N, MASSA F, SYNNAEVE G et al. End-To-End object detection with transformers[C], 213-229(2020).

    [27] BERNAL J, SÁNCHEZ F J, FERNÁNDEZ-ESPARRACH G et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians[J]. Computerized Medical Imaging and Graphics, 43, 99-111(2015).

    [28] SMEDSRUD P H, RIEGLER M A et al. Kvasir-seg: a segmented polyp dataset[C]. Springer International Publishing, 451-462(2020).

    [29] VÁZQUEZ D, BERNAL J, SÁNCHEZ F J et al. A benchmark for endoluminal scene segmentation of colonoscopy images[J]. Journal of Healthcare Engineering, 2017, 4037190(2017).

    [30] TAJBAKHSH N, GURUDU S R, LIANG J M. Automated polyp detection in colonoscopy videos using shape and context information[J]. IEEE Transactions on Medical Imaging, 35, 630-644(2016).

    [31] WEI J, WANG S H, HUANG Q M. F³Net: fusion, feedback and focus for salient object detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 12321-12328(2020).

    [32] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C], 234-241(2015).

    [33] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 39, 1856-1867(2020).

    [34] GU Z W, CHENG J, FU H Z et al. CE-net: context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 38, 2281-2292(2019).

    [35] WU H S, ZHAO Z B, WANG Z Z. META-unet: multi-scale efficient transformer attention unet for fast and high-accuracy polyp segmentation[J]. IEEE Transactions on Automation Science and Engineering, 21, 4117-4128(2024).

    [36] ZHENG J W, YAN Y D, ZHAO L et al. CGMA-net: cross-level guidance and multi-scale aggregation network for polyp segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 28, 1424-1435(2024).

    [37] DUC N T, OANH N T, THUY N T et al. ColonFormer: an efficient transformer based method for colon polyp segmentation[J]. IEEE Access, 10, 80575-80586(2022).

    [38] JIANG X B, ZHU Y, LIU Y T et al. MC-DC: an MLP-CNN based dual-path complementary network for medical image segmentation[J]. Computer Methods and Programs in Biomedicine, 242, 107846(2023).

    [39] SONG P F, LI J J, FAN H et al. TGDAUNet: transformer and GCNN based dual-branch attention UNet for medical image segmentation[J]. Computers in Biology and Medicine, 167, 107583(2023).

    Tools

    Get Citation

    Copy Citation Text

    Daxiang LI, Denghui LI, Ying LIU, Yao TANG. Progressive CNN-transformer semantic compensation network for polyp segmentation[J]. Optics and Precision Engineering, 2024, 32(16): 2523

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 15, 2024

    Accepted: --

    Published Online: Nov. 18, 2024

    The Author Email: Denghui LI (ldh_wy0908@163.com)

    DOI:10.37188/OPE.20243216.2523

    Topics