Optics and Precision Engineering, Volume. 32, Issue 16, 2523(2024)

Progressive CNN-transformer semantic compensation network for polyp segmentation

Daxiang LI... Denghui LI*, Ying LIU and Yao TANG |Show fewer author(s)
Author Affiliations
  • College of Communication and Information Engineering,Xi′an University of Posts and Telecommunication,Xi′an710121,China
  • show less
    Figures & Tables(9)
    PCTSC network overall architecture
    Same layer features interaction coupling module
    Query-based semantic compensation module
    Comparison of segmentation results of different methods
    • Table 1. Introduction to the dataset

      View table
      View in Article

      Table 1. Introduction to the dataset

      数据集年份原始分辨率图像总数
      CVC-ClinicDB2015384×288612
      Kvasir-SEG2020332×487~1 920×1 0721 000
      CVC-3002017574×50060
      CVC-ColonDB2016574×500380
    • Table 2. Performance comparison of different methods on CVC-ClinicDB and Kvasir-SEG datasets

      View table
      View in Article

      Table 2. Performance comparison of different methods on CVC-ClinicDB and Kvasir-SEG datasets

      MethodsCVC-ClinicDBKvasir-SEG
      mDicemIoUpMAESαFβωEϕmDicemIoUpMAESαFβωEϕ
      U-Net320.9010.8490.0110.9210.8950.9710.8440.7720.0420.8730.8190.901
      U-Net++330.9110.8560.0130.9290.9040.9650.8400.7690.0440.8720.8130.901
      CE-Net340.9140.8670.0150.9330.9110.9650.8940.8350.0340.9030.8770.908
      PraNet50.9300.8870.0080.9430.9190.9640.8940.8420.0330.9010.8810.938
      UACANet150.9370.8890.0080.9410.9290.9820.9060.8550.0260.9140.8970.948
      DCRNet80.9350.8950.0080.9430.9270.9850.8820.8310.0330.9010.8700.917
      CFA-Net90.8650.8100.0170.9020.8630.9590.8930.8370.0260.9060.8780.923
      META-Unet350.9120.8610.0090.9290.9070.9750.8980.8430.0290.9110.8840.926
      SSFormer100.8930.8400.0170.9200.8840.9500.9170.8660.0220.9240.9100.940
      Colonformer370.9300.8910.0070.9460.9200.9660.9220.8770.0210.9290.9080.948
      MCE-Net160.9250.8770.0080.9390.9170.9730.9120.8650.0230.9200.9030.935
      CGMA-Net360.9390.9030.0070.9510.9330.9840.9180.8740.0240.9270.9010.941
      FCBFormer140.8970.8440.0140.9210.8860.9550.9130.8600.0270.9150.8990.942
      TransFuse130.8800.8210.0170.9130.8690.9520.8720.8090.0350.8900.8550.923
      DFETC-Net210.8930.8460.0100.9240.8890.9570.8990.8390.0280.9060.8830.936
      MC-DC380.9300.8810.0110.9370.9270.9810.9070.8530.0270.9150.8980.937
      TGDAUNet390.9110.8610.0090.9280.9100.9660.8980.8430.0310.9070.8870.934
      PCTSC0.9420.8990.0060.9460.9370.9850.9290.8820.0210.9290.9190.952
    • Table 3. Performance comparison of different methods on CVC-300 and CVC-ColonDB datasets

      View table
      View in Article

      Table 3. Performance comparison of different methods on CVC-300 and CVC-ColonDB datasets

      MethodsCVC-300CVC-ColonDB
      mDicemIoUpMAESαFβωEϕmDicemIoUpMAESαFβωEϕ
      U-Net320.6700.5880.0190.8020.6360.8800.5880.5070.0510.7410.5630.813
      U-Net++330.7090.6270.0170.8270.6660.8630.5910.5110.0490.7470.5660.807
      CE-Net340.8930.8250.0080.9300.8700.9600.7320.6550.0470.8240.7100.858
      PraNet50.8910.8280.0080.9340.8690.9520.7130.6410.0420.8160.6930.845
      UACANet150.8790.8020.0090.9180.8440.9500.7340.6620.0370.8280.7210.885
      DCRNet80.8710.8060.0070.9180.8410.9600.6500.5840.0500.7820.6390.844
      CFA-Net90.8850.8180.0070.9280.8610.9610.6670.5910.0480.7890.6560.868
      META-Unet350.8920.8190.0080.9250.8680.9650.6880.6140.0440.8000.6720.853
      SSFormer100.8870.8150.0090.9270.8610.9530.7790.6960.0340.8450.7530.883
      Colonformer370.8750.8040.0080.9210.8480.9490.8070.7310.0310.8670.7840.901
      MCE-Net160.8900.8240.0100.9280.8680.9550.7910.7110.0320.8510.7750.903
      CGMA-Net360.8910.8290.0080.9350.8650.9610.7920.7210.0330.8630.7720.896
      FCBFormer140.8780.8060.0100.9190.8470.9480.7870.7060.0340.8480.7560.884
      TransFuse130.8500.7770.0120.9130.8170.9210.7340.6460.0360.8250.7070.869
      DFETC-Net210.8450.7660.0140.9070.8050.9210.6530.5720.0510.7820.6360.851
      MC-DC380.8880.8210.0080.9330.8620.9470.7780.6910.0300.8460.7540.894
      TGDAUNet390.8940.8280.0080.9330.8700.9570.7560.6810.0350.8420.7410.883
      PCTSC0.9040.8380.0060.9360.8820.9690.8030.7210.0290.8600.7810.910
    • Table 4. Comparison of computational efficiency of different methods

      View table
      View in Article

      Table 4. Comparison of computational efficiency of different methods

      MethodsFLOPs/GParams/M
      U-Net32152.15439.396
      U-Net++33377.44947.176
      CE-Net3416.82829.003
      PraNet513.14930.498
      UACANet1559.64667.109
      DCRNet817.26828.734
      CFA-Net955.36025.239
      META-Unet359.71621.696
      SSFormer1022.74646.399
      Colonformer3722.98252.945
      MCE-Net1639.21258.459
      CGMA-Net3633.12130.962
      FCBFormer1473.29552.943
      TransFuse1321.78826.174
      DFETC-Net2166.01346.092
      MC-DC38126.950100.979
      TGDAUNet39105.145261.502
      PCTSC16.26434.586
    • Table 5. Results of ablation experiments for different modules

      View table
      View in Article

      Table 5. Results of ablation experiments for different modules

      MethodsCVC-ClinicDBKvasir-SEGCVC-300CVC-ColonDB
      mDicemIoUpmDicemIoUpmDicemIoUpmDicemIoUp
      Baseline0.9330.8860.9150.8610.8830.8140.7930.701
      Baseline+SLFIC0.9390.8930.9220.8730.9020.8370.8150.734
      Baseline+QBSC0.9340.8900.9270.8790.9030.8370.7980.721
      PCTSC0.9420.8990.9290.8820.9040.8380.8030.721
    Tools

    Get Citation

    Copy Citation Text

    Daxiang LI, Denghui LI, Ying LIU, Yao TANG. Progressive CNN-transformer semantic compensation network for polyp segmentation[J]. Optics and Precision Engineering, 2024, 32(16): 2523

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 15, 2024

    Accepted: --

    Published Online: Nov. 18, 2024

    The Author Email: LI Denghui (ldh_wy0908@163.com)

    DOI:10.37188/OPE.20243216.2523

    Topics