Laser & Optoelectronics Progress, Volume. 60, Issue 13, 1316013(2023)

Wet-Spun MXene Fibers and Their Wearable Applications

Ming Xiao, Chaoyang Miao, Jing Bian, and Jianmin Li*
Author Affiliations
  • School of Electronics and Optical Engineering, School of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210003, Jiangsu, China
  • show less
    References(63)

    [1] Rogers J A. Nanomesh on-skin electronics[J]. Nature Nanotechnology, 12, 839-840(2017).

    [2] Wang Z R, Hao Z A, Yu S F et al. A wearable and deformable graphene-based affinity nanosensor for monitoring of cytokines in biofluids[J]. Nanomaterials, 10, 1503(2020).

    [3] Wei M Y, Lian J, Jiang Q F et al. Ellipsometry study on optical properties of two-dimensional platinum selenide film[J]. Chinese Journal of Lasers, 48, 1203002(2021).

    [4] Guo Y W, Li Y, Ma Z W. Research on symmetry of BaTiO3 film based on second-harmonic generation technology[J]. Acta Optica Sinica, 41, 0619001(2021).

    [5] Anasori B, Lukatskaya M R, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2, 16098(2017).

    [6] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [7] Weng Q H, Wang X B, Wang X et al. Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications[J]. Chemical Society Reviews, 45, 3989-4012(2016).

    [8] Nicolosi V, Chhowalla M, Kanatzidis M et al. Liquid exfoliation of layered materials[J]. Science, 340, 1420-1431(2013).

    [9] Naguib M, Kurtoglu M, Presser V et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 23, 4248-4253(2011).

    [10] Lipatov A, Lu H D, Alhabeb M et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers[J]. Science Advances, 4, eaat0491(2018).

    [11] Lipatov A, Goad A, Loes M J et al. High electrical conductivity and breakdown current density of individual monolayer Ti3C2Tx MXene flakes[J]. Matter, 4, 1413-1427(2021).

    [12] Meng W X, Liu X J, Song H Q et al. Advances and challenges in 2D MXenes: from structures to energy storage and conversions[J]. Nano Today, 40, 101273(2021).

    [13] Shahzad F, Alhabeb M, Hatter C B et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 353, 1137-1140(2016).

    [14] Sinha A, Zhao H M, Huang Y J et al. MXene: an emerging material for sensing and biosensing[J]. TrAC Trends in Analytical Chemistry, 105, 424-435(2018).

    [15] Zhang J Q, Zhao Y F, Guo X et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction[J]. Nature Catalysis, 1, 985-992(2018).

    [16] Zhang J Z, Uzun S, Seyedin S et al. Additive-free MXene liquid crystals and fibers[J]. ACS Central Science, 6, 254-265(2020).

    [17] Levitt A, Zhang J Z, Dion G et al. MXene-based fibers, yarns, and fabrics for wearable energy storage devices[J]. Advanced Functional Materials, 30, 2000739(2020).

    [18] VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science, 372, eabf1581(2021).

    [19] Ghidiu M, Halim J, Kota S et al. Ion-exchange and cation solvation reactions in Ti3C2 MXene[J]. Chemistry of Materials, 28, 3507-3514(2016).

    [20] Halim J, Lukatskaya M R, Cook K M et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials, 26, 2374-2381(2014).

    [21] Tao Q Z, Dahlqvist M, Lu J et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering[J]. Nature Communications, 8, 14949(2017).

    [22] Mockute A, Tao Q, Dahlqvist M et al. Materials synthesis, neutron powder diffraction, and first-principles calculations of (MoxSc1–x)2AlC i–MAX phase used as parent material for MXene derivation[J]. Physical Review Materials, 3, 113607(2019).

    [23] Alhabeb M, Maleski K, Anasori B et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials, 29, 7633-7644(2017).

    [24] Zhang Z W, Cai Z H, Zhang Y et al. The recent progress of MXene-Based microwave absorption materials[J]. Carbon, 174, 484-499(2021).

    [25] Jiang Q A, Pei X, Wu L W et al. High-performance thermoplastic hybrid composite reinforced with bucky paper for electromagnetic interference shielding[J]. Polymer Composites, 40, 3065-3074(2019).

    [26] Weng C X, Xing T L, Jin H et al. Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance[J]. Composites Part A: Applied Science and Manufacturing, 135, 105927(2020).

    [27] Yu D S, Goh K, Wang H et al. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage[J]. Nature Nanotechnology, 9, 555-562(2014).

    [28] Lukatskaya M R, Kota S, Lin Z F et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy, 2, 17105(2017).

    [29] Wang D, Zhou C K, Filatov A S et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes[J]. Science, 379, 1242-1247(2023).

    [30] Wang Y J, Li Q G, Fan Z X. Property comparison of optical thin films prepared by E-beam, ion assisted deposition and ion beam sputtering[J]. High Power Laser & Particle Beams, 15, 841-844(2003).

    [31] Liu Z R, Li D N, Sheng Q et al. Preparation techniques of nanopores in ultrathin membranes using energetic heavy ions[J]. Chinese Science Bulletin, 68, 1090-1095(2023).

    [32] Urbankowski P, Anasori B, Makaryan T et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)[J]. Nanoscale, 8, 11385-11391(2016).

    [33] Li Y B, Shao H, Lin Z F et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials, 19, 894-899(2020).

    [34] Uzun S, Seyedin S, Stoltzfus A L et al. Knittable and washable multifunctional MXene-coated cellulose yarns[J]. Advanced Functional Materials, 29, 1905015(2019).

    [35] Wang Z Y, Qin S, Seyedin S et al. MXene yarn supercapacitors: high-performance biscrolled MXene/carbon nanotube yarn supercapacitors (small 37/2018)[J]. Small, 14, 1870167(2018).

    [36] Levitt A, Seyedin S, Zhang J Z et al. Bath electrospinning of continuous and scalable multifunctional MXene-infiltrated nanoyarns[J]. Small, 16, 2002158(2020).

    [37] Luo D J, Gao J, Tian X et al. Research and developing in preparation, assembly and applications of Ti3C2TxMXene materials[J]. Acta Materiae Compositae Sinica, 39, 467-477(2022).

    [38] Eom W, Shin H, Ambade R B et al. Large-scale wet-spinning of highly electroconductive MXene fibers[J]. Nature Communications, 11, 2825(2020).

    [39] Jing S A, Gao N, Tang Z Y et al. Capacitive-type liquid crystal temperature sensor[J]. Liquid Crystals, 48, 1103-1110(2021).

    [40] Onsager L. The effects of shape on the interaction of colloidal particles[J]. Annals of the New York Academy of Sciences, 51, 627-659(1949).

    [41] van der Beek D, Lekkerkerker H N W. Liquid crystal phases of charged colloidal platelets[J]. Langmuir, 20, 8582-8586(2004).

    [42] Jalili R, Aboutalebi S H, Esrafilzadeh D et al. Formation and processability of liquid crystalline dispersions of graphene oxide[J]. Materials Horizons, 1, 87-91(2014).

    [43] Akuzum B, Maleski K, Anasori B et al. Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes[J]. ACS Nano, 12, 2685-2694(2018).

    [44] Shin H, Eom W, Lee K H et al. Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel[J]. ACS Nano, 15, 3320-3329(2021).

    [45] Li S, Fan Z D, Wu G Q et al. Assembly of nanofluidic MXene fibers with enhanced ionic transport and capacitive charge storage by flake orientation[J]. ACS Nano, 15, 7821-7832(2021).

    [46] Natu V, Sokol M, Verger L et al. Effect of edge charges on stability and aggregation of Ti3C2Tz MXene colloidal suspensions[J]. The Journal of Physical Chemistry C, 122, 27745-27753(2018).

    [47] Fan Z D, Jin J A, Li C et al. 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink[J]. ACS Nano, 15, 3098-3107(2021).

    [48] Yang Q Y, Xu Z, Fang B et al. MXene/graphene hybrid fibers for high performance flexible supercapacitors[J]. Journal of Materials Chemistry A, 5, 22113-22119(2017).

    [49] Zhang J Z, Seyedin S, Qin S et al. Highly conductive Ti3C2Tx MXene hybrid fibers for flexible and elastic fiber-shaped supercapacitors[J]. Small, 15, e1804732(2019).

    [50] Liu L X, Chen W, Zhang H B et al. Super-tough and environmentally stable aramid. Nanofiber@MXene coaxial fibers with outstanding electromagnetic interference shielding efficiency[J]. Nano-Micro Letters, 14, 1-14(2022).

    [51] Seyedin S, Uzun S, Levitt A et al. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles[J]. Advanced Functional Materials, 30, 1910504(2020).

    [52] Chen X, Jiang J J, Yang G Y et al. Bioinspired wood-like coaxial fibers based on MXene@graphene oxide with superior mechanical and electrical properties[J]. Nanoscale, 12, 21325-21333(2020).

    [53] Li Y Z, Zhang X T. Electrically conductive, optically responsive, and highly orientated Ti3C2Tx MXene aerogel fibers[J]. Advanced Functional Materials, 32, 2107767(2022).

    [54] Wang L, Zhang M Y, Yang B et al. Lightweight, robust, conductive composite fibers based on MXene@Aramid nanofibers as sensors for smart fabrics[J]. ACS Applied Materials & Interfaces, 13, 41933-41945(2021).

    [55] Usman K A S, Zhang J Z, Qin S et al. Inducing liquid crystallinity in dilute MXene dispersions for facile processing of multifunctional fibers[J]. Journal of Materials Chemistry A, 10, 4770-4781(2022).

    [56] Liu L X, Chen W, Zhang H B et al. Tough and electrically conductive Ti3C2Tx MXene-based core-shell fibers for high-performance electromagnetic interference shielding and heating application[J]. Chemical Engineering Journal, 430, 133074(2022).

    [57] Wang H F, Wang Y R, Chang J et al. Nacre-inspired strong MXene/cellulose fiber with superior supercapacitive performance via synergizing the interfacial bonding and interlayer spacing[J]. Nano Letters, 01307(2023).

    [58] Wang S, Du X, Luo Y et al. Hierarchical design of waterproof, highly sensitive, and wearable sensing electronics based on MXene-reinforced durable cotton fabrics[J]. Chemical Engineering Journal, 408, 127363(2021).

    [59] Li H, Du Z Q. Preparation of a highly sensitive and stretchable strain sensor of MXene/silver nanocomposite-based yarn and wearable applications[J]. ACS Applied Materials & Interfaces, 11, 45930-45938(2019).

    [60] Cheng B C, Wu P Y. Scalable fabrication of kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities[J]. ACS Nano, 15, 8676-8685(2021).

    [61] Lee S H, Eom W, Shin H et al. Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing[J]. ACS Applied Materials & Interfaces, 12, 10434-10442(2020).

    [62] Fu X M, Yang H T, Li Z P et al. Cation-induced assembly of conductive MXene fibers for wearable heater, wireless communication, and stem cell differentiation[J]. ACS Biomaterials Science & Engineering, 9, 2129-2139(2023).

    [63] Hong S, Kang S H, Kim Y et al. Transparent and flexible antenna for wearable glasses applications[J]. IEEE Transactions on Antennas and Propagation, 64, 2797-2804(2016).

    Tools

    Get Citation

    Copy Citation Text

    Ming Xiao, Chaoyang Miao, Jing Bian, Jianmin Li. Wet-Spun MXene Fibers and Their Wearable Applications[J]. Laser & Optoelectronics Progress, 2023, 60(13): 1316013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials

    Received: Jun. 13, 2023

    Accepted: Jun. 28, 2023

    Published Online: Jul. 25, 2023

    The Author Email: Li Jianmin (lijm@njupt.edu.cn)

    DOI:10.3788/LOP231529

    Topics