Acta Photonica Sinica, Volume. 52, Issue 6, 0623001(2023)

Advances of Inverse Design in Photonics(Invited)

Peng HONG1... Longxiayu HU2, Zixin ZHOU3, Haoran QIN4, Jiale CHEN2, Ye FAN5, Tongyu YIN6, Junlong KOU1,2,*, and Yanqing LU27,** |Show fewer author(s)
Author Affiliations
  • 1School of Integrated Circuits, Nanjing University, Suzhou 215163, China
  • 2School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
  • 3College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China
  • 4College of Physics, Sichuan University, Chengdu 610065, China
  • 5School of Microelectronics Science and Technology, Sun Yat-Sen University, Zhuhai 519082, China
  • 6School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
  • 7College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
  • show less
    References(124)

    [1] H A ATWATER, A POLMAN. Plasmonics for improved photovoltaic devices. Nature Materials, 9, 205-213(2010).

    [2] M C FU, F W GLOVER, J APRIL. In simulation optimization: A review, new developments, and applications, 83-95(2005).

    [3] S LIU, K ZHANG, S CAO et al. In design and optimization of terahertz bandpass filter based on SiC substrate, 205-207(2021).

    [4] G A KRAFTMAKHER, V S BUTYLKIN. A composite medium with simultaneously negative permittivity and permeability. Technical Physics Letters, 29, 230-232(2003).

    [5] K YAMAZOE, I MOCHI, K A GOLDBERG. Gradient descent algorithm applied to wavefront retrieval from through-focus images by an extreme ultraviolet microscope with partially coherent source. Journal of the Optical Society of America a-Optics Image Science and Vision, 31, B34-B43(2014).

    [6] P I BOREL, A HARPOTH, L H FRANDSEN et al. Topology optimization and fabrication of photonic crystal structures. Optics Express, 12, 1996-2001(2004).

    [7] R MATZEN, J S JENSEN, O SIGMUND. Topology optimization for transient response of photonic crystal structures. Journal of the Optical Society of America B-Optical Physics, 27, 2040-2050(2010).

    [8] J RIISHEDE, O SIGMUND. Inverse design of dispersion compensating optical fiber using topology optimization. Journal of the Optical Society of America B-Optical Physics, 25, 88-97(2008).

    [9] Y ELESIN, B S LAZAROV, J S JENSEN et al. Design of robust and efficient photonic switches using topology optimization. Photonics and Nanostructures-Fundamentals and Applications, 10, 153-165(2012).

    [10] Z MICHALEWICZ, M MICHALEWICZ. Evolutionary computation techniques and their applications, 14-25(1997).

    [11] D S WANG, D P TAN, L LIU. Particle swarm optimization algorithm: an overview. Soft Computing, 22, 387-408(2018).

    [12] S S AN, C FOWLER, B W ZHENG et al. A deep learning approach for objective-driven all-dielectric metasurface design. Acs Photonics, 6, 3196-3207(2019).

    [13] D J LIU, Y X TAN, E KHORAM et al. Training deep neural networks for the inverse design of nanophotonic structures. Acs Photonics, 5, 1365-1369(2018).

    [14] S KIM, J M SHIN, J LEE et al. Inverse design of organic light-emitting diode structure based on deep neural networks. Nanophotonics, 10, 4533-4541(2021).

    [15] Y ELESIN, B S LAZAROV, J S JENSEN et al. Time domain topology optimization of 3D nanophotonic devices. Photonics and Nanostructures-Fundamentals and Applications, 12, 23-33(2014).

    [16] D C KIM, A HERMERSCHMIDT, P DYACHENKO et al. Inverse design and demonstration of high-performance wide-angle diffractive optical elements. Optics Express, 28, 22321-22333(2020).

    [17] L SU, R TRIVEDI, N V SAPRA et al. Fully-automated optimization of grating couplers. Optics Express, 26, 4023-4034(2018).

    [18] F CALLEWAERT, V VELEV, P KUMAR et al. Inverse-designed broadband all-dielectric electromagnetic metadevices. Scientific Reports, 8, 8(2018).

    [19] Y TAKAHASHI, Y INUI, M CHIHARA et al. A micrometre-scale Raman silicon laser with a microwatt threshold. Nature, 498, 470-474(2013).

    [20] R HALIR, Y OKAWACHI, J S LEVY et al. Ultrabroadband supercontinuum generation in a CMOS-compatible platform. Optics Letters, 37, 1685-1687(2012).

    [21] C E RUTER, K G MAKRIS, R EL-GANAINY et al. Observation of parity-time symmetry in optics. Nature Physics, 6, 192-195(2010).

    [22] B ZHEN, C W HSU, Y IGARASHI et al. Spawning rings of exceptional points out of Dirac cones. Nature, 525, 354-358(2015).

    [23] W K LEE, S C YU, C J ENGEL et al. Concurrent design of quasi-random photonic nanostructures. Proceedings of the National Academy of Sciences of the United States of America, 114, 8734-8739(2017).

    [24] G KIM, J A DOMINGUEZ-CABALLERO, H LEE et al. Increased photovoltaic power output via diffractive spectrum separation. Physical Review Letters, 110, 5(2013).

    [25] A Y PIGGOTT, J LU, K G LAGOUDAKIS et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nature Photonics, 9, 374-377(2015).

    [26] B SHEN, P WANG, R POLSON et al. An integrated-nanophotonics polarization beamsplitter with 2.4×2.4 μm(2) footprint. Nature Photonics, 9, 378-382(2015).

    [27] X H SHI, Y C LIANG, H P LEE et al. An improved GA and a novel PSO-GA-based hybrid algorithm. Information Processing Letters, 93, 255-261(2005).

    [28] H J CHUNG, O D MILLER. Tunable metasurface inverse design for 80% switching efficiencies and 144 degrees angular deflection. Acs Photonics, 7, 2236-2243(2020).

    [29] C M LALAU-KERALY, S BHARGAVA, O D MILLER et al. Adjoint shape optimization applied to electromagnetic design. Optics Express, 21, 21693-21701(2013).

    [30] S SO, T BADLOE, J NOH et al. Deep learning enabled inverse design in nanophotonics. Nanophotonics, 9, 1041-1057(2020).

    [31] A Y PIGGOTT, J PETYKIEWICZ, L G SU et al. Fabrication-constrained nanophotonic inverse design. Scientific Reports, 7, 7(2017).

    [32] A MCNAMARA, A TREUILLE, Z POPOVIC et al. Fluid control using the adjoint method. Acm Transactions on Graphics, 23, 449-456(2004).

    [33] S W DIRECTOR, R A ROHRER. Generalized adjoint network and network sensitivities. IEEE Transactions on Circuit Theory, 16, 318-323(1969).

    [34] H CHUNG, O D MILLER. High-NA achromatic metalenses by inverse design. Optics Express, 28, 6945-6965(2020).

    [35] L SU, A Y PIGGOTT, N V SAPRA et al. Inverse design and demonstration of a compact on-chip narrowband three-channel wavelength demultiplexer. Acs Photonics, 5, 301-305(2018).

    [36] M ZHOU, D J LIU, S W BELLING et al. Inverse design of metasurfaces based on coupled-mode theory and adjoint optimization. Acs Photonics, 8, 2265-2273(2021).

    [37] D SELL, J J YANG, S DOSHAY et al. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Letters, 17, 3752-3757(2017).

    [38] M MANSOUREE, H KWON, E ARBABI et al. Multifunctional 2.5D metastructures enabled by adjoint optimization. Optica, 7, 77-84(2020).

    [39] O SIGMUND, J S JENSEN. Systematic design of phononic band-gap materials and structures by topology optimization. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 361, 1001-1019(2003).

    [40] L HARZHEIM, G GRAF. A review of optimization of cast parts using topology optimization-Ⅱ-Topology optimization with manufacturing constraints. Structural and Multidisciplinary Optimization, 31, 388-399(2006).

    [41] M PAPADRAKAKIS, Y TSOMPANAKIS, N D LAGAROS. Structural shape optimization using evolution strategies. Engineering Optimization, 31, 515-540(1999).

    [42] G ALLAIRE, C DAPOGNY, F JOUVE. Shape and topology optimization, 22, 1-132(2021).

    [43] J PETERSSON, O SIGMUND. Slope constrained topology optimization. International Journal for Numerical Methods in Engineering, 41, 1417-1434(1998).

    [44] M P BENDSØE, N KIKUCHI. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 71, 197-224(1988).

    [45] M P BENDSOE, J GUEDES, R B HABER et al. An analytical model to predict optimal material properties in the context of optimal structural design. Journal of Applied Mechanics, 61, 930-937(1994).

    [46] M KOCVARA, M STINGL, J ZOWE. Free material optimization: recent progress. Optimization, 57, 79-100(2008).

    [47] M P BENDSØE. Optimal shape design as a material distribution problem. Structural Optimization, 1, 193-202(1989).

    [48] M ZHOU, G ROZVANY. The COC algorithm, Part Ⅱ: Topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 89, 309-336(1991).

    [49] H P MLEJNEK. Some aspects of the genesis of structures. Structural Optimization, 5, 64-69(1992).

    [50] M P BENDSOE, O SIGMUND. Material interpolation schemes in topology optimization. Archive of Applied Mechanics, 69, 635-654(1999).

    [51] A DIAZ, O SIGMUND. Checkerboard patterns in layout optimization. Structural Optimization, 10, 40-45(1995).

    [52] O SIGMUND. On the design of compliant mechanisms using topology optimization. Mechanics of Structures and Machines, 25, 493-524(1997).

    [53] J K GUEST, J H PREVOST, T BELYTSCHKO. Achieving minimum length scale in topology optimization using nodal design variables and projection functions. International Journal for Numerical Methods in Engineering, 61, 238-254(2004).

    [54] O SIGMUND. Morphology-based black and white filters for topology optimization. Structural and Multidisciplinary Optimization, 33, 401-424(2007).

    [55] S XU, Y CAI, G CHENG. Volume preserving nonlinear density filter based on heaviside functions. Structural and Multidisciplinary Optimization, 41, 495-505(2010).

    [56] O SIGMUND. A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 21, 120-127(2001).

    [57] E ANDREASSEN, A CLAUSEN, M SCHEVENELS et al. Efficient topology optimization in MATLAB using 88 lines of code. Structural and Multidisciplinary Optimization, 43, 1-16(2011).

    [58] K SVANBERG. The method of moving asymptotes - a new method for structural optimization. International Journal for Numerical Methods in Engineering, 24, 359-373(1987).

    [59] J S JENSEN, O SIGMUND. Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends. Applied Physics Letters, 84, 2022-2024(2004).

    [60] C Y KAO, S OSHER, E YABLONOVITCH. Maximizing band gaps in two-dimensional photonic crystals by using level set methods. Applied Physics B-Lasers and Optics, 81, 235-244(2005).

    [61] M BURGER. A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces and Free Boundaries, 5, 301-329(2003).

    [62] M BURGER, S J OSHER, E YABLONOVITCH. Inverse problem techniques for the design of photonic crystals. Ieice Transactions on Electronics, E87C, 258-265(2004).

    [63] D VERCRUYSSE, N V SAPRA, L SU et al. Analytical level set fabrication constraints for inverse design. Scientific Reports, 9, 8999(2019).

    [64] J PEURIFOY, Y C SHEN, L JING et al. Nanophotonic particle simulation and inverse design using artificial neural networks. Science Advances, 4, 7(2018).

    [65] W MA, F CHENG, Y M LIU. Deep-learning-enabled on-demand design of chiral metamaterials. Acs Nano, 12, 6326-6334(2018).

    [66] A P BLANCHARD-DIONNE, O J F MARTIN. Teaching optics to a machine learning network. Optics Letters, 45, 2922-2925(2020).

    [67] I MALKIEL, M MREJEN, A NAGLER et al. Plasmonic nanostructure design and characterization via deep learning. Light-Science & Applications, 7, 8(2018).

    [68] J POUGET-ABADIE, M MIRZA, B XU et al. Generative adversarial nets. Advances in Neural Information Processing Systems, 63, 139-144(2020).

    [69] Y HAN, S XIANG, Y ZHANG et al. An all-MRR-based photonic spiking neural network for spike sequence learning. Photonics, 9, 120(2022).

    [70] S S AN, B W ZHENG, H TANG et al. Multifunctional metasurface design with a generative adversarial network. Advanced Optical Materials, 9, 10(2021).

    [72] D P KINGMA, M WELLING. Auto-encoding variational bayes(2013).

    [73] W MA, F CHENG, Y H XU et al. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Advanced Materials, 31, 9(2019).

    [74] L LU, J D JOANNOPOULOS, M SOLJAČIĆ. Topological states in photonic systems. Nature Physics, 12, 626-629(2016).

    [75] B Y XIE, H F WANG, X Y ZHU et al. Photonics meets topology. Optics Express, 26, 24531-24550(2018).

    [76] W ZHU, Y Q DING, J REN et al. Zak phase and band inversion in dimerized one-dimensional locally resonant metamaterials. Physical Review B, 97, 195307(2018).

    [77] B PENG, Ş K ÖZDEMIR, F LEI et al. Parity-time-symmetric whispering-gallery microcavities. Nature Physics, 10, 394-398(2014).

    [78] C E RÜTER, K G MAKRIS, R EL-GANAINY et al. Observation of parity-time symmetry in optics. Nature Physics, 6, 192-195(2010).

    [79] R E CHRISTIANSEN, F WANG, O SIGMUND. Topological insulators by topology optimization. Physical Review Letters, 122, 234502(2019).

    [80] R E CHRISTIANSEN, F WANG, O SIGMUND et al. Designing photonic topological insulators with quantum-spin-Hall edge states using topology optimization. Nanophotonics, 8, 1363-1369(2019).

    [81] S BARIK, H MIYAKE, W DEGOTTARDI et al. Two-dimensionally confined topological edge states in photonic crystals. New Journal of Physics, 18, 113013(2016).

    [82] E SAUER, J P VASCO, S HUGHES. Theory of intrinsic propagation losses in topological edge states of planar photonic crystals. Physical Review Research, 2, 043109(2020).

    [83] A REGENSBURGER, C BERSCH, M-AMIRI et al. Parity-time synthetic photonic lattices. Nature, 488, 167-171(2012).

    [84] A PICK, Z LIN, W JIN et al. Enhanced nonlinear frequency conversion and Purcell enhancement at exceptional points. Physical Review B, 96, 224303(2017).

    [85] B ZHEN, C W HSU, Y IGARASHI et al. Spawning rings of exceptional points out of Dirac cones. Nature, 525, 354-358(2015).

    [86] S MOLESKY, Z LIN, A Y PIGGOTT et al. Inverse design in nanophotonics. Nature Photonics, 12, 659-670(2018).

    [87] S NANTHAKUMAR, X ZHUANG, H S PARK et al. Inverse design of quantum spin hall-based phononic topological insulators. Journal of the Mechanics and Physics of Solids, 125, 550-571(2019).

    [88] J LUO, Z DU, C LIU et al. Moving Morphable Components-based inverse design formulation for quantum valley/spin hall insulators. Extreme Mechanics Letters, 45, 101276(2021).

    [89] L HE, Z WEN, Y JIN et al. Inverse design of topological metaplates for flexural waves with machine learning. Materials & Design, 199, 109390(2021).

    [90] Z LIN, X LIANG, M LONČAR et al. Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization. Optica, 3, 233-238(2016).

    [91] Z HAO, L ZHANG, W MAO et al. Second-harmonic generation using d 33 in periodically poled lithium niobate microdisk resonators. Photonics Research, 8, 311-317(2020).

    [92] Z F BI, A W RODRIGUEZ, H HASHEMI et al. High-efficiency second-harmonic generation in doubly-resonant χ (2) microring resonators. Optics Express, 20, 7526-7543(2012).

    [93] J B KHURGIN. How to deal with the loss in plasmonics and metamaterials. Nature Nanotechnology, 10, 2-6(2015).

    [94] Z LIN, M LONČAR, A W RODRIGUEZ. Topology optimization of multi-track ring resonators and 2D microcavities for nonlinear frequency conversion. Optics Letters, 42, 2818-2821(2017).

    [95] S A MANN, H GOH, A ALÙ. Inverse design of nonlinear polaritonic metasurfaces for second harmonic generation. Acs Photonics, 10, 993-1000(2023).

    [96] R E CHRISTIANSEN, J MICHON, M BENZAOUIA et al. Inverse design of nanoparticles for enhanced Raman scattering. Optics Express, 28, 4444-4462(2020).

    [97] Z LI, R PESTOURIE, Z LIN et al. Empowering metasurfaces with inverse design: principles and applications. Acs Photonics, 9, 2178-2192(2022).

    [98] A ZHAN, R GIBSON, J WHITEHEAD et al. Controlling three-dimensional optical fields via inverse Mie scattering. Science Advances, 5, eaax4769(2019).

    [99] T PHAN, D SELL, E W WANG et al. High-efficiency, large-area, topology-optimized metasurfaces. Light: Science & Applications, 8, 48(2019).

    [100] E BAYATI, R PESTOURIE, S COLBURN et al. Inverse designed metalenses with extended depth of focus. Acs Photonics, 7, 873-878(2020).

    [101] A S BACKER. Computational inverse design for cascaded systems of metasurface optics. Optics Express, 27, 30308-30331(2019).

    [102] I SAJEDIAN, T BADLOE, J RHO. Optimisation of colour generation from dielectric nanostructures using reinforcement learning. Optics Express, 27, 5874-5883(2019).

    [103] H CHUNG, O D MILLER. Tunable metasurface inverse design for 80% switching efficiencies and 144 angular deflection. Acs Photonics, 7, 2236-2243(2020).

    [104] S S PANDA, H S VYAS, R S HEGDE. Robust inverse design of all-dielectric metasurface transmission-mode color filters. Optical Materials Express, 10, 3145-3159(2020).

    [105] Z LI, P LIN, Y-W HUANG et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Science Advances, 7, eabe4458(2021).

    [106] Z LI, R PESTOURIE, J S PARK et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nature Communications, 13, 2409(2022).

    [107] R PESTOURIE, C PÉREZ-ARANCIBIA, Z LIN et al. Inverse design of large-area metasurfaces. Optics Express, 26, 33732-33747(2018).

    [108] T JALALI, M JAFARI, A MOHAMMADI. Genetic algorithm optimization of antireflection coating consisting of nanostructured thin films to enhance silicon solar cell efficacy. Materials Science and Engineering: B, 247, 114354(2019).

    [109] A YOLALMAZ, E YÜCE. Hybrid design of spectral splitters and concentrators of light for solar cells using iterative search and neural networks. Photonics and Nanostructures-Fundamentals and Applications, 48, 100987(2022).

    [110] R PESTOURIE, W YAO, B KANTÉ et al. Efficient inverse design of large-area metasurfaces for incoherent light. Acs Photonics, 10, 854-860(2023).

    [111] W HADIBRATA, H WEI, S KRISHNASWAMY et al. Inverse design and 3D printing of a metalens on an optical fiber tip for direct laser lithography. Nano Letters, 21, 2422-2428(2021).

    [112] C ROQUES-CARMES, Z LIN, R E CHRISTIANSEN et al. Toward 3D-printed inverse-designed metaoptics. Acs Photonics, 9, 43-51(2022).

    [113] Q WU, X LI, L JIANG et al. Deep neural network for designing near-and far-field properties in plasmonic antennas. Optical Materials Express, 11, 1907-1917(2021).

    [114] Q WU, X LI, W WANG et al. Comparison of different neural network architectures for plasmonic inverse design. ACS Omega, 6, 23076-23082(2021).

    [115] F A A NUGROHO, P BAI, I DARMADI et al. Inverse designed plasmonic metasurface with parts per billion optical hydrogen detection. Nature Communications, 13, 5737(2022).

    [116] H CHUNG, J PARK, S V BORISKINA. Inverse-designed waveguide-based biosensor for high-sensitivity, single-frequency detection of biomolecules. Nanophotonics, 11, 1427-1442(2022).

    [117] C DORY, D VERCRUYSSE, K Y YANG et al. Inverse-designed diamond photonics. Nature Communications, 10, 3309(2019).

    [118] G B HOFFMAN, C DALLO, A STARBUCK et al. Improved broadband performance of an adjoint shape optimized waveguide crossing using a Levenberg-Marquardt update. Optics Express, 27, 24765-24780(2019).

    [119] A Y PIGGOTT, E Y MA, L SU et al. Inverse-designed photonics for semiconductor foundries. Acs Photonics, 7, 569-575(2020).

    [120] M YUAN, G YANG, S SONG et al. Inverse design of a nano-photonic wavelength demultiplexer with a deep neural network approach. Optics Express, 30, 26201-26211(2022).

    [121] K Y YANG, C SHIRPURKAR, A D WHITE et al. Multi-dimensional data transmission using inverse-designed silicon photonics and microcombs. Nature Communications, 13, 7862(2022).

    [123] Z A KUDYSHEV, A V KILDISHEV, V M SHALAEV et al. Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization. Applied Physics Reviews, 7, 021407(2020).

    [124] H QI, Z DU, X HU et al. High performance integrated photonic circuit based on inverse design method. Opto-Electronic Advances, 5, 210061(2022).

    Tools

    Get Citation

    Copy Citation Text

    Peng HONG, Longxiayu HU, Zixin ZHOU, Haoran QIN, Jiale CHEN, Ye FAN, Tongyu YIN, Junlong KOU, Yanqing LU. Advances of Inverse Design in Photonics(Invited)[J]. Acta Photonica Sinica, 2023, 52(6): 0623001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Device

    Received: Mar. 29, 2023

    Accepted: May. 22, 2023

    Published Online: Jul. 27, 2023

    The Author Email: KOU Junlong (jlkou@nju.edu.cn), LU Yanqing (yqlu@nju.edu.cn)

    DOI:10.3788/gzxb20235206.0623001

    Topics