Optics and Precision Engineering, Volume. 31, Issue 3, 340(2023)

Multi-scale decomposition of point cloud data based on wavelet transform

Kaiyuan GAO1... Lei LIU1, Haihua CUI1,*, Pengcheng LI1, Xiaoxu LIU2 and Lin LIU2 |Show fewer author(s)
Author Affiliations
  • 1College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing2006, China
  • 2Beijing Institute of Aerospace Metrology and Testing Technology, Beijing100076, China
  • show less
    Figures & Tables(22)
    Schematic diagram of multi-scale 3D measurements
    Multilevel wavelet decomposition space
    Convolutional nuclei
    Grid convolution
    Macro-micro combined measurement results of blade
    Decomposition results of wavelet method
    Decomposation results of random sampling method
    Decomposation results of curvature sampling method
    Results of scale spatial decomposition method
    Comparison of differences between different decomposition methods
    Pore registration results
    Macro-micro combined measurement results of raster
    Grid edge registration results
    Inspection results of leaf without pores
    Leaf edge registration results
    • Table 1. Statistic of wavelet method decomposition results

      View table
      View in Article

      Table 1. Statistic of wavelet method decomposition results

      点云点个数均方差/mm面维数面维数差体维数体维数差
      原始1 073 59101.156 10-0.364 50
      栅格1 073 59101.144 80.011 3-0.362 80.001 7
      采样1次129 5280.002 570 21.108 10.048 0-0.369 10.004 6
      采样2次15 3930.005 718 01.081 40.074 7-0.391 10.026 6
      采样3次1 8720.012 060 81.017 40.138 7-0.405 20.040 7
      采样4次2160.023 510 10.945 90.210 2-0.640 20.275 7
    • Table 2. Statistics of random sampling decomposition results

      View table
      View in Article

      Table 2. Statistics of random sampling decomposition results

      点云点个数均方差/mm面维数面维数差体维数体维数差
      原始1 073 59101.156 10-0.364 50
      分解1次128 83101.146 80.009 3-0.372 80.008 3
      分解2次15 46001.072 60.083 5-0.392 10.027 6
      分解3次1 85501.012 10.144 0-0.425 90.061 4
    • Table 3. Statistics of curvature sampling decomposition results

      View table
      View in Article

      Table 3. Statistics of curvature sampling decomposition results

      点云点个数均方差/mm面维数面维数差体维数体维数差
      原始1 073 59101.156 10-0.364 50
      分解1次128 83101.068 00.088 1-0.353 90.010 6
      分解2次15 46001.030 70.125 4-0.366 30.011 8
      分解3次1 84200.995 50.160 6-0.442 20.077 7
    • Table 4. Statistics of scale spatial decomposition results

      View table
      View in Article

      Table 4. Statistics of scale spatial decomposition results

      点云点个数均方差/mm面维数面维数差体维数体维数差
      原始1 073 59101.156 10-0.364 50
      分解1次128 8310.002 075 841.091 10.065 0-0.407 80.043 3
      分解2次15 4600.002 070 131.081 10.075 0-0.431 60.067 1
      分解3次1 8550.002 014 681.008 80.147 3-0.512 30.147 8
    • Table 5. Comparison of multiple decomposition registration error for wavelet method

      View table
      View in Article

      Table 5. Comparison of multiple decomposition registration error for wavelet method

      分解次数配准时间/s配准均方根误差/mm
      0(原始数据)301.9860.042 275 9
      1114.6380.023 725 1
      239.1650.017 195 0
      329.3680.016 334 5
    • Table 6. Approximate scale of raster constrains the comparison of registration errors

      View table
      View in Article

      Table 6. Approximate scale of raster constrains the comparison of registration errors

      分解次数配准时间/s配准均方根误差/mm
      0(原始数据)207.1640.051 801
      147.9430.030 997
      220.0530.029 199
      313.6220.029 079
    • Table 7. Comparison of approximate scale constraint registration errors of blade edges

      View table
      View in Article

      Table 7. Comparison of approximate scale constraint registration errors of blade edges

      分解次数配准时间/s配准均方根误差/mm
      0(原始数据)215.6830.016 210 9
      1147.6740.016 210 7
      230.5860.010 027 6
      315.6050.008 333 7
    Tools

    Get Citation

    Copy Citation Text

    Kaiyuan GAO, Lei LIU, Haihua CUI, Pengcheng LI, Xiaoxu LIU, Lin LIU. Multi-scale decomposition of point cloud data based on wavelet transform[J]. Optics and Precision Engineering, 2023, 31(3): 340

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Micro/Nano Technology and Fine Mechanics

    Received: Jun. 29, 2022

    Accepted: --

    Published Online: Mar. 7, 2023

    The Author Email: CUI Haihua (cuihh@nuaa.edu.cn)

    DOI:10.37188/OPE.20233103.0340

    Topics