Optics and Precision Engineering, Volume. 31, Issue 20, 2943(2023)
Photoelectric inequivalence characteristics of an electric substitution radiative heat flux meter
[1] [1] 高庆华, 郄殿福. 热流测量技术发展综述[J]. 航天器环境工程, 2020, 37(3): 218-227. doi: 10.12126/see.2020.03.002GAOQ H, QIED F. The development of heat flux measurement technology[J]. Spacecraft Environment Engineering, 2020, 37(3): 218-227.(in Chinese). doi: 10.12126/see.2020.03.002
[2] K B ZHOU, N A LIU, L H ZHANG et al. Thermal radiation from fire whirls: revised solid flame model. Fire Technology, 50, 1573-1587(2014).
[3] A R GIFFORD, D O HUBBLE, C A PULLINS et al. Durable heat flux sensor for extreme temperature and heat flux environments. Journal of Thermophysics and Heat Transfer, 24, 69-76(2010).
[4] X YE, X L YI, C LIN et al. Instrument development: Chinese radiometric benchmark of reflected solar band based on space cryogenic absolute radiometer. Remote Sensing, 12, 2856(2020).
[5] G THUILLIER, P ZHU, M SNOW et al. Characteristics of solar-irradiance spectra from measurements, modeling, and theoretical approach. Light: Science & Applications, 11, 79(2022).
[6] [6] 闫指江, 沈丹, 吴彦森, 等. 多喷管运载火箭底部热环境研究[J]. 导弹与航天运载技术, 2021(1): 105-109, 114.YANZ J, SHEND, WUY S, et al. Research on the base heating environment of a multi-nozzle heavy launch vehicle[J]. Missiles and Space Vehicles, 2021(1): 105-109, 114.(in Chinese)
[7] [7] 衣小龙, 杨振岭, 叶新, 等. 低温辐射计斜底腔吸收比测量[J]. 光学 精密工程, 2015, 23(10): 2733-2739. doi: 10.3788/ope.20152310.2733YIX L, YANGZ L, YEX, et al. Absorptance measurement for sloping bottom cavity of cryogenic radiometer[J]. Opt. Precision Eng., 2015, 23(10): 2733-2739.(in Chinese). doi: 10.3788/ope.20152310.2733
[8] [8] 衣小龙, 方伟, 林延东, 等. 空间低温绝对辐射初级基准实验特性及测量精度评估[J]. 光学 精密工程, 2021, 29(1): 10-20. doi: 10.37188/OPE.20212901.0010YIX L, FANGW, LINY D, et al. Experimental characteristics and measurement accuracy evaluation of space cryogenic absolute radiometric primary benchmark[J]. Opt. Precision Eng., 2021, 29(1): 10-20.(in Chinese). doi: 10.37188/OPE.20212901.0010
[9] [9] 吴铎, 王凯, 叶新, 等. 空间低温绝对辐射计研究[J]. 发光学报, 2019, 40(8): 1015-1021. doi: 10.3788/fgxb20194008.1015WUD, WANGK, YEX, et al. Space cryogenic absolute radiometer[J]. Chinese Journal of Luminescence, 2019, 40(8): 1015-1021.(in Chinese). doi: 10.3788/fgxb20194008.1015
[10] [10] 高鑫, 王凯, 方伟. 太阳辐照度绝对辐射计吸收腔结构优化[J]. 光学 精密工程, 2018, 26(3): 624-631. doi: 10.3788/ope.20182603.0624GAOX, WANGK, FANGW. Optimization on the structure of the absorption cavity of solar irradiance absolute radiometer[J]. Opt. Precision Eng., 2018, 26(3): 624-631.(in Chinese). doi: 10.3788/ope.20182603.0624
[11] [11] 唐潇, 贾平, 王凯, 等. 太阳辐照度绝对辐射计的光电不等效性修正[J]. 光学 精密工程, 2016, 34(10): 2370-2376. doi: 10.3788/ope.20162410.2370TANGX, JIAP, WANGK, et al. Non-equivalence correction of solar irradiance absolute radiometer[J]. Opt. Precision Eng., 2016, 34(10): 2370-2376.(in Chinese). doi: 10.3788/ope.20162410.2370
[12] [12] 唐潇, 方伟, 王玉鹏. 绝对辐射计一次反射不等效的影响及实验分析[J]. 中国激光, 2016, 43(4): 0408003. doi: 10.3788/cjl201643.0408003TANGX, FANGW, WANGY P. Effect and experiment analysis of first specular reflection error on absolute radiometers[J]. Chinese Journal of Lasers, 2016, 43(4): 0408003.(in Chinese). doi: 10.3788/cjl201643.0408003
[13] [13] 郑翔远, 叶新, 罗志涛, 等. 高精度辐射热流计的不确定度分析与评价[J]. 中国光学(中英文), 2022(4): 780-788. doi: 10.37188/co.2022-0023ZHENGX Y, YEX, LUOZ T, et al. Uncertainty analysis and evaluation of a high-precision radiative heat-flux meter[J]. Chinese Optics, 2022(4): 780-788.(in Chinese). doi: 10.37188/co.2022-0023
Get Citation
Copy Citation Text
Xin YE, Xiangyuan ZHENG, Zhitao LUO. Photoelectric inequivalence characteristics of an electric substitution radiative heat flux meter[J]. Optics and Precision Engineering, 2023, 31(20): 2943
Category: Modern Applied Optics
Received: May. 17, 2023
Accepted: --
Published Online: Nov. 28, 2023
The Author Email: YE Xin (yexin@ciomp.ac.cn)