Optics and Precision Engineering, Volume. 31, Issue 20, 2943(2023)

Photoelectric inequivalence characteristics of an electric substitution radiative heat flux meter

Xin YE1,*... Xiangyuan ZHENG1,2 and Zhitao LUO1 |Show fewer author(s)
Author Affiliations
  • 1Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 30033, China
  • 2University of the Chinese Academy of Sciences, Beijing 100049, China
  • show less
    Figures & Tables(14)
    Diagram of structural schematic
    Diagram of operating principle of electrical substitution
    Grid division of radiant heat flux meter
    Temperature profile of radiant heat flux meter
    Outside light path
    Light path in vacuum tank
    • Table 1. Main component parameter list

      View table
      View in Article

      Table 1. Main component parameter list

      元件材料参数
      吸收腔

      热导率:426 W/(m·K)

      热容:234 J/(kg·K)

      密度:10 500/(kg·m-3

      热沉无氧铜

      热导率:395 W/(m·K)

      热容:386 J/(kg·K)

      密度:8 900/(kg·m-3

      外壳铝合金

      热导率:236 W/(m·K)

      热容:902 J/(kg·K)

      密度:2 710/(kg·m-3

    • Table 2. Transmission-reflection ratio test results

      View table
      View in Article

      Table 2. Transmission-reflection ratio test results

      透射光测得值反射光测得值

      实验1

      实验2

      实验3

      均值

      0.441 0

      0.441 3

      0.440 9

      0.441 1

      0.016 56

      0.016 53

      0.016 55

      0.016 55

    • Table 3. Response test results of radiant heat flux meter in non-vacuum environment

      View table
      View in Article

      Table 3. Response test results of radiant heat flux meter in non-vacuum environment

      光功率测量结果电功率测量结果

      功率/W

      响应度/(W·V-1

      0.011 47

      12.59

      0.011 65

      12.56

    • Table 4. Response test result of radiant heat flux meter in vacuum environment

      View table
      View in Article

      Table 4. Response test result of radiant heat flux meter in vacuum environment

      光功率测量结果电功率测量结果

      功率/W

      响应度/(W·V-1

      0.011 47

      8.692

      0.011 7

      8.686

    • Table 5. Simulation results of photoelectric heating position deviation

      View table
      View in Article

      Table 5. Simulation results of photoelectric heating position deviation

      模拟光加热模拟电加热

      施加功率/W

      温差响应/K

      0.05

      0.092 402

      0.05

      0.092 397

    • Table 6. Simulation results of different heating regions of sensitive surface

      View table
      View in Article

      Table 6. Simulation results of different heating regions of sensitive surface

      加热位置/mm00.511.52
      温差响应/K0.092 4410.092 4420.092 4420.092 4420.092 441
    • Table 7. Simulation results of photoelectric heating position deviation in fluid field

      View table
      View in Article

      Table 7. Simulation results of photoelectric heating position deviation in fluid field

      模拟光加热模拟电加热

      施加功率/W

      温差响应/K

      0.05

      0.069 689

      0.05

      0.069 572

    • Table 8. Simulation results of different heating regions of sensitive surface in fluid field

      View table
      View in Article

      Table 8. Simulation results of different heating regions of sensitive surface in fluid field

      加热位置/mm00.511.52
      温差响应/K0.069 6890.069 6890.069 6900.069 7080.069 765
    Tools

    Get Citation

    Copy Citation Text

    Xin YE, Xiangyuan ZHENG, Zhitao LUO. Photoelectric inequivalence characteristics of an electric substitution radiative heat flux meter[J]. Optics and Precision Engineering, 2023, 31(20): 2943

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Modern Applied Optics

    Received: May. 17, 2023

    Accepted: --

    Published Online: Nov. 28, 2023

    The Author Email: YE Xin (yexin@ciomp.ac.cn)

    DOI:10.37188/OPE.20233120.2943

    Topics