Journal of Inorganic Materials, Volume. 39, Issue 9, 1070(2024)

Performance of Lateral 4H-SiC Photoconductive Semiconductor Switches by Extrinsic Backside Trigger

Hao WANG1,2, Xuechao LIU1、*, Zhong ZHENG3, Xiuhong PAN1, Jintao XU1, Xinfeng ZHU1,2, Kun CHEN1, Weijie DENG1, Meibo TANG1, Hui GUO3, and Pan GAO4
Author Affiliations
  • 11. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201889, China
  • 22. University of Chinese Academy of Sciences, Beijing 100049, China
  • 33. School of Microelectronics, Xidian University, Xi’an 710071, China
  • 44. School of Material Science, Shanghai Dianji University, Shanghai 201306, China
  • show less
    References(25)

    [1] S H CHANG, X C LIU, W HUANG et al. Preparation and properties of lateral contact structure SiC photoconductive semiconductor switches. Journal of Inorganic Materials, 1058(2012).

    [2] J W BRAGG, W W SULLIVAN, D MAUCH et al. All solid-state high power microwave source with high repetition frequency. Review of Scientific Instruments, 054703(2013).

    [3] J R HARRIS, D BLACKFIELD, G J CAPORASO et al. Vacuum insulator development for the dielectric wall accelerator. Journal of Applied Physics, 023301(2008).

    [5] C F YAN, E W SHI, Z Z CHEN et al. Super fast and high power SiC photoconductive semiconductor switches. Journal of Inorganic Materials, 425(2008).

    [6] E MAJDA-ZDANCEWICZ, M SUPRONIUK, M PAWŁOWSKI et al. Current state of photoconductive semiconductor switch engineering. Opto-Electronics Review, 92(2018).

    [7] A R CHOWDHURY, R NESS, R P JOSHI. Assessing lock-on physics in semi-insulating GaAs and InP photoconductive switches triggered by subbandgap excitation. IEEE Transactions on Electron Devices, 3922(2018).

    [8] M XU, Y WANG, C LIU et al. Photoexcited carrier dynamics in a GaAs photoconductive switch under nJ excitation. Plasma Science and Technology, 075503(2022).

    [9] C JAMES, C HETTLER, J DICKENS. Design and evaluation of a compact silicon carbide photoconductive semiconductor switch. IEEE Transactions on Electron Devices, 508(2011).

    [10] F YANG, Z WANG, Z LIANG et al. Electrical performance advancement in SiC power module package design with kelvin drain connection and low parasitic inductance. IEEE Journal of Emerging and Selected Topics in Power Electronics, 84(2019).

    [11] X CHU, J LIU, T XUN et al. MHz repetition frequency, hundreds kilowatt, and sub-nanosecond agile pulse generation based on linear 4H-SiC photoconductive semiconductor. IEEE Transactions on Electron Devices, 597(2022).

    [12] J S SULLIVAN, J R STANLEY. 6H-SiC photoconductive switches triggered at below bandgap wavelengths. IEEE Transactions on Dielectrics and Electrical Insulation, 980(2007).

    [13] C HETTLER, W W SULLIVAN, J DICKENS et al. Performance and optimization of a 50 kV silicon carbide photoconductive semiconductor switch for pulsed power applications. Proceedings of the 2012 IEEE International Power Modulator and High Voltage Conference, San Diego(2012).

    [14] J HUANG, L HU, Z MA et al. Study on photoelectric efficiency and failure mechanism of high purity 4H-SiC PCSS. IEEE Transactions on Electron Devices, 5762(2023).

    [15] K ZHU, S DOGAN, Y T MOON et al. Effect of n+-GaN subcontact layer on 4H-SiC high-power photoconductive switch. Applied Physics Letters, 261108(2005).

    [16] L XIAO, X YANG, P DUAN et al. Effect of electron avalanche break-down on a high-purity semi-insulating 4H-SiC photoconductive semiconductor switch under intrinsic absorption. Applied Optics, 2804(2018).

    [17] D MAUCH, W SULLIVAN, A BULLICK et al. High power lateral silicon carbide photoconductive semiconductor switches and investigation of degradation mechanisms. IEEE Transactions on Plasma Science, 2021(2015).

    [18] Z ZHENG, W HUANG, W W HAN et al. Analyzing the effects of aluminum-doped ZnO and Ag layers for the transparent electrode vertical PCSS. IEEE Transactions on Electron Devices, 2414(2020).

    [19] T Y ZHOU, X C LIU, W HUANG et al. Application of an Al-doped zinc oxide subcontact layer on vanadium-compensated 6H-SiC photoconductive switches. Chinese Physics B, 044209(2015).

    [20] B WANG, L WANG, X NIU et al. Breakdown behavior of SiC photoconductive switch with transparent electrode. AIP Advances, 085210(2022).

    [21] A R CHOWDHURY, D MAUCH, R P JOSHI et al. Contact extensions over a high-k dielectric layer for surface field mitigation in high power 4H-SiC photoconductive switches. IEEE Transactions on Electron Devices, 1(2016).

    [22] Z FENG, C LUAN, L XIAO et al. Performance of a novel rear-triggered 4H-SiC photoconductive semiconductor switch. IEEE Transactions on Electron Devices, 627(2023).

    [23] W FU, L WANG, B WANG et al. Investigation on the photocurrent tail of vanadium-compensated 4H-SiC for microwave application. AIP Advances, 095121(2022).

    [24] Z ZHAI, R ZHANG, A TANG et al. Fabrication of microstructure on C/SiC surface via femtosecond laser diffraction. Materials Letters, 293711(2021).

    [25] I W KIM, S J DOH, C C KIM et al. Effect of evaporation on surface morphology of epitaxial ZnO films during postdeposition annealing. Applied Surface Science, 179(2005).

    Tools

    Get Citation

    Copy Citation Text

    Hao WANG, Xuechao LIU, Zhong ZHENG, Xiuhong PAN, Jintao XU, Xinfeng ZHU, Kun CHEN, Weijie DENG, Meibo TANG, Hui GUO, Pan GAO. Performance of Lateral 4H-SiC Photoconductive Semiconductor Switches by Extrinsic Backside Trigger[J]. Journal of Inorganic Materials, 2024, 39(9): 1070

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Mar. 20, 2024

    Accepted: --

    Published Online: Dec. 13, 2024

    The Author Email: LIU Xuechao (xcliu@mail.sic.ac.cn)

    DOI:10.15541/jim20240136

    Topics