Acta Photonica Sinica, Volume. 52, Issue 5, 0552203(2023)

Research Advance in Astronomical High-precision Wavelength Calibration Technology(Invited)

Tongjun LIU1...2,3, Huiqi YE1,2, Liang TANG1,2, Zhibo HAO1,2, Jian HAN1,2, Yang ZHAI1,2, and Dong XIAO12,* |Show fewer author(s)
Author Affiliations
  • 1National Astronomical Observatories/Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences, Nanjing 210042, China
  • 2CAS Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology, Nanjing 210042, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(116)

    [1] S MAO, B PACZYNSKI. Gravitational microlensing by double stars and planetary systems. The Astrophysical Journal, 374, L37(1991).

    [2] A GOULD, A LOEB. Discovering planetary systems through gravitational microlenses. The Astrophysical Journal, 396, 104(1992).

    [3] J SOUTHWORTH. Homogeneous studies of transiting extrasolar planets-I. Light-curve analyses. Monthly Notices of the Royal Astronomical Society, 386, 1644-1666(2008).

    [4] G TORRES, J WINN, M HOLMAN. Improved parameters for extrasolar transiting planets. The Astrophysical Journal, 677, 1324(2008).

    [5] C MAROIS, B MACINTOSH, T BARMAN et al. Direct imaging of multiple planets orbiting the star HR 8799. Science, 322, 1348-1352(2008).

    [6] K WAGNER, D APAI, M KASPER et al. Direct imaging discovery of a Jovian exoplanet within a triple-star system. Science, 353, 673-678(2016).

    [7] M MAYOR, C LOVIS, N C SANTOS. Doppler spectroscopy as a path to the detection of Earth-like planets. Nature, 513, 328-335(2014).

    [8] M MAYOR, D QUELOZ. A Jupiter-mass companion to a solar-type star. Nature, 378, 355-359(1995).

    [9] F PEPE, D EHRENREICH, M MEYER. Instrumentation for the detection and characterization of exoplanets. Nature, 513, 358-366(2014).

    [10] T WILKEN, C LOVIS, A MANESCAU et al. High-precision calibration of spectrographs. Monthly Notices of the Royal Astronomical Society: Letters, 405, L16-L20(2010).

    [11] J LISKE, A GRAZIAN, E VANZELLA et al. Cosmic dynamics in the era of extremely large telescopes. Monthly Notices of the Royal Astronomical Society, 386, 1192-1218(2008).

    [12] D FISCHER, G ANGLADA-ESCUDE, P ARRIAGADA et al. State of the field: extreme precision radial velocities. Publications of the Astronomical Society of the Pacific, 128, 66001(2016).

    [13] C LOVIS, F PEPE. A new list of thorium and argon spectral lines in the visible. Astronomy & Astrophysics, 468, 1115-1121(2007).

    [14] C LOVIS, F PEPE, F BOUCHY et al. The exoplanet hunter HARPS: unequalled accuracy and perspectives toward 1 cm s·1 precision, 6269, 249-257(2006).

    [15] T UDEM, R HOLZWARTH, T HÄNSCH. Optical frequency metrology. Nature, 416, 233-237(2002).

    [16] T STEINMETZ, T WILKEN, C ARAUJO-HAUCK et al. Laser frequency combs for astronomical observations. Science, 321, 1335-1337(2008).

    [17] C LI, A BENEDICK, P FENDEL et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s(-1). Nature, 452, 610-612(2008).

    [18] T WILKEN, G CURTO, R A PROBST et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level. Nature, 485, 611-614(2012).

    [19] A GLENDAY, C LI, N LANGELLIER et al. Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph. Optica, 2, 250-254(2015).

    [20] U LEMKE, J CORBETT, J ALLINGTON-SMITH et al. Modal noise prediction in fibre spectroscopy-Ⅰ. Visibility and the coherent model. Monthly Notices of the Royal Astronomical Society, 417, 689-697(2011).

    [21] J SPRONCK, Z KAPLAN, D FISCHER et al. Extreme Doppler precision with octagonal fiber scramblers, 8446, 1210-1219(2012).

    [22] K MCCOY, L RAMSEY, S MAHADEVAN et al. Optical fiber modal noise in the 0.8 to 1.5 micron region and implications for near infrared precision radial velocity measurements, 8446, 1161-1168(2012).

    [23] R PROBST, G CURTO, G ÁVILA et al. Relative stability of two laser frequency combs for routine operation on HARPS and FOCES, 9908, 1839-1854(2016).

    [24] R PROBST, D MILAKOVIĆ, B TOLEDO-PADRÓN et al. A crucial test for astronomical spectrograph calibration with frequency combs. Nature Astronomy, 4, 603-608(2020).

    [25] B CAMPBELL, G WALKER. Precision radial velocities with an absorption cell. Publications of the Astronomical Society of the Pacific, 91, 540(1979).

    [26] E KAMBE, B SATO, Y TAKEDA et al. Development of iodine cells for the subaru HDS and the okayama HIDES: I. instrumentation and performance of the spectrographs. Publications of the Astronomical Society of Japan, 54, 865-871(2002).

    [27] D FISCHER, G MARCY, J SPRONCK. The twenty-five year lick planet search. The Astrophysical Journal Supplement Series, 210, 5(2014).

    [28] R BUTLER, G MARCY, E WILLIAMS et al. Attaining doppler precision of 3 M S-1. Publications of the Astronomical Society of the Pacific, 108, 500(1996).

    [29] M ENDL, M KÜRSTER, S ELS et al. The planet search program at the ESO Coudé Echelle spectrometer. Astronomy and Astrophysics, 392, 671-690(2002).

    [30] R BUTLER, C TINNEY, G MARCY et al. Two new planets from the anglo-australian planet search. The Astrophysical Journal, 555, 410(2001).

    [31] A TOKOVININ, D FISCHER, M BONATI et al. CHIRON—a fiber fed spectrometer for precise radial velocities. Publications of the Astronomical Society of the Pacific, 125, 1336(2013).

    [32] S WANG, J WRIGHT, P MACQUEEN et al. Calibrating iodine cells for precise radial velocities. Publications of the Astronomical Society of the Pacific, 132, 014503(2020).

    [33] L SARMIENTO, A REINERS, U SEEMANN et al. Characterizing U-Ne hollow cathode lamps at near-IR wavelengths for the CARMENES survey, 9147, 1669-1677(2014).

    [34] F KERBER, G NAVE, C SANSONETTI et al. The spectrum of Th-Ar hollow-cathode lamps in the 900-4 500 nm region: establishing wavelength standards for the calibration of VLT spectrographs, 6269, 850-860(2006).

    [35] F PEPE, M MAYOR, G RUPPRECHT et al. HARPS: ESO's coming planet searcher: chasing exoplanets with the La Silla 3.6-m telescope. The Messenger, 110, 9-14(2002).

    [36] X BONFILS, T FORVEILLE, X DELFOSSE et al. The HARPS search for southern extra-solar planets. Astronomy and Astrophysics, 443, L15-L18(2005).

    [37] F PEPE, C LOVIS, D SÉGRANSAN et al. The HARPS search for Earth-like planets in the habitable zone. Astronomy and Astrophysics, 534, A58(2011).

    [38] S PERRUCHOT, D KOHLER, F BOUCHY et al. The SOPHIE spectrograph: design and technical key-points for high throughput and high stability, 7014, 235-246(2008).

    [39] A CHAKRABORTY, S MAHADEVAN, A ROY et al. The PRL stabilized high-resolution echelle fiber-fed spectrograph: instrument description and first radial velocity results. Publications of the Astronomical Society of the Pacific, 126, 133(2014).

    [40] G NAVE, F KERBER, E DEN HARTOG et al. The dirt in astronomy's genie lamp: ThO contamination of Th-Ar calibration lamps, 10704, 80-92(2018).

    [41] R DREVER, J HALL, F KOWALSKI et al. Laser phase and frequency stabilization using an optical resonator. Applied Physics B Photophysics and Laser Chemistry, 31, 97-105(1983).

    [42] H DOERR, T STEINMETZ, R HOLZWARTH et al. A laser frequency comb system for absolute calibration of the VTT echelle spectrograph. Solar Physics, 280, 663-670(2012).

    [43] R PROBST, L WANG, H DOERR et al. Comb-calibrated solar spectroscopy through a multiplexed single-mode fiber channel. New Journal of Physics, 17, 023048(2015).

    [44] D PHILLIPS, A GLENDAY, C LI et al. Calibration of an astrophysical spectrograph below 1 m/s using a laser frequency comb. Optics Express, 20, 13711-13726(2012).

    [45] G YCAS, F QUINLAN, S DIDDAMS et al. Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb. Optics Express, 20, 6631-6643(2012).

    [46] Yuanjie WU, Huiqi YE, Jian HAN et al. Astronomical laser frequency comb for high resolution spectrograph of a 2.16-m telescope. Acta Optica Sinica, 36, 0614001(2016).

    [47] Z HAO, H YE, J HAN et al. Calibration tests of a 25-GHz mode-spacing broadband astro-comb on the fiber-fed High Resolution Spectrograph (HRS) of the chinese 2.16-m telescope. Publications of the Astronomical Society of the Pacific, 130, 125001(2018).

    [48] J LÖHNER-BöTTCHER, W SCHMIDT, H DOERR et al. LARS: an absolute reference spectrograph for solar observations. Astronomy & Astrophysics, 607-12(2017).

    [49] R MCCRACKEN, E DEPAGNE, R KUHN et al. Wavelength calibration of a high resolution spectrograph with a partially stabilized 15-GHz astrocomb from 550 to 890 nm. Optics Express, 25, 6450-6460(2017).

    [50] R PETERSBURG, ONG J JOEL, L ZHAO et al. An extreme-precision radial-velocity pipeline: first radial velocities from EXPRES. The Astronomical Journal, 159, 187(2020).

    [51] R BLACKMAN, D FISCHER, C JURGENSON et al. Performance verification of the extreme precision spectrograph. The Astronomical Journal, 159, 238(2020).

    [52] G L O CURTO, J WEBB, L PASQUINI et al. Precision and consistency of astrocombs. Monthly Notices of the Royal Astronomical Society, 493, 3997-4011(2020).

    [53] L WANG, F GRUPP, H KELLERMANN et al. Line profile analysis of the laser frequency comb in FOCES, 10400, 532-539(2017).

    [54] F PEPE, P MOLARO, S CRISTIANI et al. ESPRESSO: the next European exoplanet hunter. Astronomische Nachrichten, 335, 8-20(2014).

    [55] T SCHMIDT, P MOLARO, M MURPHY et al. Fundamental physics with ESPRESSO: Towards an accurate wavelength calibration for a precision test of the fine-structure constant. Astronomy & Astrophysics, 646, A144(2021).

    [56] M MURPHY, P MOLARO, A LEITE et al. Fundamental physics with ESPRESSO: precise limit on variations in the fine-structure constant towards the bright quasar HE 0515-4414. Astronomy & Astrophysics, 658, A123(2022).

    [57] R PROBST, G CURTO, G AVILA et al. A laser frequency comb featuring sub-cm/s precision for routine operation on HARPS, 9147, 498-509(2014).

    [58] L CRAUSE, R MCCRACKEN, D REID et al. Development of a laser frequency comb and precision radial velocity pipeline for SALT's HRS, 12184, 1589-1596(2022).

    [59] Y WU, Z HUANG, T STEINMETZ et al. 20 GHz astronomical laser frequency comb with super-broadband spectral coverage, 12184, 1J(2022).

    [60] Y CHENG, D XIAO, R MCCRACKEN et al. Laser-frequency-comb calibration for the Extremely Large Telescope: an OPO-based infrared astrocomb covering the H and J bands. Journal of the Optical Society of America B, 38, A15-A20(2021).

    [61] B CAMPBELL. Precision radial velocities. Publications of the Astronomical Society of the Pacific, 95, 577(1983).

    [62] R G DEVOE, C FABRE, K JUNGMANN et al. Precision optical-frequency-difference measurements. Physical Review A, 37, 1802-1805(1988).

    [63] F WILDI, F PEPE, B CHAZELAS et al. A Fabry-Perot calibrator of the HARPS radial velocity spectrograph: performance report, 7735, 1853-1863(2010).

    [64] F WILDI, F PEPE, B CHAZELAS et al. The performance of the new Fabry-Perot calibration system of the radial velocity spectrograph HARPS, 8151, 535-543(2011).

    [65] F WILDI, B CHAZELAS, F PEPE. A passive cost-effective solution for the high accuracy wavelength calibration of radial velocity spectrographs, 8446, 1122-1129(2012).

    [66] S SCHÄFER, A REINERS. Two Fabry-Perot interferometers for high precision wavelength calibration in the near-infrared, 8446, 1306-1313(2012).

    [67] A QUIRRENBACH, P AMADO, J CABALLERO et al. CARMENES: an overview six months after first light, 9908, 296-309(2016).

    [68] A QUIRRENBACH, P AMADO, I RIBAS et al. CARMENES: high-resolution spectra and precise radial velocities in the red and infrared, 10702, 246-263(2018).

    [69] S HALVERSON, S MAHADEVAN, L RAMSEY et al. Development of fiber Fabry-Perot interferometers as stable near-infrared calibration sources for high resolution spectrographs. Publications of the Astronomical Society of the Pacific, 126, 445-458(2014).

    [70] K STRASSMEIER, I ILYIN, M STEFFEN. PEPSI deep spectra. Astronomy & Astrophysics, 612, A44(2018).

    [71] K STRASSMEIER, I ILYIN, A JÄRVINEN et al. PEPSI: The high-resolution échelle spectrograph and polarimeter for the large binocular telescope. Astronomische Nachrichten, 336, 324-361(2015).

    [72] C BETTERS, M HERMOUET, T BLANC et al. Low cost photonic comb for sub-m/s wavelength calibration, 9912, 2156-2162(2016).

    [73] T DAS, R BANYAL, T SIVARANI et al. Development of a stabilized Fabry-Perot etalonbased calibrator for Hanle echelle spectrograph. Applied Optics, 59, 5464-5472(2020).

    [74] R TERRIEN, J NINAN, S DIDDAMS et al. Broadband stability of the habitable zone planet finder Fabry-Pérot etalon calibration system: evidence for chromatic variation. The Astronomical Journal, 161, 252(2021).

    [75] F CERSULLO, F WILDI, B CHAZELAS et al. A new infrared Fabry-Pérot-based radial-velocity-reference module for the SPIRou radial-velocity spectrograph. Astronomy & Astrophysics, 601, 1-12(2017).

    [76] A SEIFAHRT, J BEAN, D KASPER et al. MAROON-X: the first two years of EPRVs from Gemini North, 12184, 498-512(2022).

    [77] J HAO, L TANG, H YE et al. Development of a calibrator based on Fabry-Pérot etalon for high resolution spectrograph(2021).

    [78] J HAO, L TANG, H YE et al. Effect of near-field distribution on transmission characteristics of fiber-fed Fabry-Perot etalons. The Astronomical Journal, 161, A102(2021).

    [79] L TANG, H YE, J HAO et al. Design and characterization of a thermally stabilized fiber Fabry-Perot etalon as a wavelength calibrator for high-precision spectroscopy. Applied Optics, 60, D1-D8(2021).

    [80] S LEIFER, A SAVCHENKOV, AEL AMILI et al. A microresonator-based etalon for visible light precision radial velocity measurements, 11447, 326-336(2020).

    [81] C SCHWAB, J STüRMER, Y GUREVICH et al. Stabilizing a Fabry-Perot etalon peak to 3 cm s-1 for spectrograph calibration. Publications of the Astronomical Society of the Pacific, 127, 880-889(2015).

    [82] J STüRMER, A SEIFAHRT, C SCHWAB et al. Rubidium-traced white-light etalon calibrator for radial velocity measurements at the cm s·1 level. Journal of Astronomical Telescopes, Instruments, and Systems, 3, 54206397(2017).

    [83] J CRASS, D AIKENS, J MASON et al. The final design of the iLocater spectrograph: an optimized architecture for diffraction-limited EPRV instruments, 12184, 579-589(2022).

    [84] A REINERS, R BANYAL, R ULBRICH. A laser-lock concept to reach cm s-1-precision in Doppler experiments with Fabry-Pérot wavelength calibrators. Astronomy & Astrophysics, 569, A77(2014).

    [85] R BANYAL, A REINERS. A dual cavity Fabry-Perot device for high precision Doppler measurements in astronomy. Journal of Astronomical Instrumentation, 6, 1750001(2017).

    [86] T SCHMIDT, B CHAZELAS, C LOVIS et al. Chromatic drift of the Espresso Fabry-Pérot etalon. Astronomy & Astrophysics, 664, A191(2022).

    [87] J JENNINGS, R TERRIEN, C FREDRICK et al. Frequency stability of the mode spectrum of broad bandwidth Fabry-Pérot interferometers. OSA Continuum, 3, 1177-1193(2020).

    [88] F BAUER, M ZECHMEISTER, A REINERS. Calibrating echelle spectrographs with Fabry-Pérot etalons. Astronomy & Astrophysics, 581, A117(2015).

    [89] F CERSULLO, A COFFINET, B CHAZELAS et al. New wavelength calibration for echelle spectrographs using Fabry-Pérot etalons. Astronomy & Astrophysics, 624, A122(2019).

    [90] Zhibo HAO, Huiqi YE, Liang TANG et al. Improvement of wavelength calibration accuracy of astronomical high-resolution spectrometers with Fabry-Perot etalons. Acta Optica Sinica, 42, 0112001(2022).

    [91] J SCHUERMANS, G RASKIN, D BOWMAN et al. CubeSpec: LED-based calibration system, 12180, 1064-1072(2022).

    [92] T KOBAYASHI, T SUETA, Y CHO et al. High‐repetition‐rate optical pulse generator using a Fabry‐Perot electro‐optic modulator. Applied Physics Letters, 21, 341-343(1972).

    [93] T KOBAYASHI, H YAO, K AMANO et al. Optical pulse compression using high-frequency electrooptic phase modulation. IEEE Journal of Quantum Electronics, 24, 382-387(1988).

    [94] A METCALF, T ANDERSON, C BENDER et al. Stellar spectroscopy in the near-infrared with a laser frequency comb. Optica, 6, 233-239(2019).

    [95] X YI, K VAHALA, J LI et al. Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy. Nature Communications, 7, 10436(2016).

    [96] E OBRZUD, M RAINER, A HARUTYUNYAN et al. Broadband near-infrared astronomical spectrometer calibration and on-sky validation with an electro-optic laser frequency comb. Optics Express, 26, 34830-34841(2018).

    [97] T SERIZAWA, T KUROKAWA, Y TANAKA et al. Laser frequency comb system for the infrared Doppler spectrograph on the Subaru Telescope, 12188, 1689-1695(2022).

    [98] A ISHIZAWA, T NISHIKAWA, A MIZUTORI et al. Phase-noise characteristics of a 25-GHz-spaced optical frequency comb based on a phase- and intensity-modulated laser. Optics Express, 21, 29186-29194(2013).

    [99] T TANABE, S FUJII, R SUZUKI. Review on microresonator frequency combs. Japanese Journal of Applied Physics, 58, SJ0801(2019).

    [100] T HERR, V BRASCH, J D JOST et al. Temporal solitons in optical microresonators. Nature Photonics, 8, 145-52(2013).

    [101] Xinliang ZHANG, Yanjing ZHAO. Research progress of microresonator-based optical frequency combs. Acta Optica Sinica, 41, 0823014(2021).

    [102] T KIPPENBERG, A GAETA, M LIPSON et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [103] Z NEWMAN, V MAURICE, T DRAKE et al. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680-685(2019).

    [104] E OBRZUD, M RAINER, A HARUTYUNYAN et al. A microphotonic astrocomb. Nature Photonics, 13, 31-35(2018).

    [105] M SUH, X YI, Y LAI et al. Searching for exoplanets using a microresonator astrocomb. Nature Photonics, 13, 25-30(2019).

    [106] A BARTELS, D HEINECKE, S DIDDAMS. Passively mode-locked 10 GHz femtosecond Ti:sapphire laser. Optics Letters, 33, 1905-1907(2008).

    [107] H CHEN, G CHANG, S XU et al. 3GHz, fundamentally mode-locked, femtosecond Yb-fiber laser. Optics Letters, 37, 3522-3524(2012).

    [108] D MÉGEVAND, F ZERBI, A CABRAL et al. ESPRESSO: the ultimate rocky exoplanets hunter for the VLT, 8446, 609-623(2012).

    [109] X LIU, A BRUCH, J LU et al. Beyond 100 THz-spanning ultraviolet frequency combs in a non-centrosymmetric crystalline waveguide. Nature Communications, 10, 2971(2019).

    [110] A METCALF, C FREDRICK, R TERRIEN et al. 30  GHz electro-optic frequency comb spanning 300  THz in the near infrared and visible. Optics Letters, 44, 2673-2676(2019).

    [111] E OBRZUD, V BRASCH, T VOUMARD et al. Visible blue-to-red 10GHz frequency comb via on-chip triple-sum-frequency generation. Optics Letters, 44, 5290-5293(2019).

    [112] S LEE, D OH, Q YANG et al. Towards visible soliton microcomb generation. Nature Communications, 8, 1295(2017).

    [113] Y ZHAO, X JI, B KIM et al. Near-visible microresonator-based soliton combs(2019).

    [114] X XUE, Y XUAN, Y LIU et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nature Photonics, 9, 594-600(2015).

    [115] R DORN, P BRISTOW, J SMOKER et al. CRIRES+ on sky: high spectral resolution at infrared wavelength enabling better science at the ESO VLT, 12184, 478-497(2022).

    [116] A MARCONI, C PRIETO, PAMADO et al. ELT-HIRES, the high resolution spectrograph for the ELT: results from the Phase A study, 10702, 619-634(2018).

    Tools

    Get Citation

    Copy Citation Text

    Tongjun LIU, Huiqi YE, Liang TANG, Zhibo HAO, Jian HAN, Yang ZHAI, Dong XIAO. Research Advance in Astronomical High-precision Wavelength Calibration Technology(Invited)[J]. Acta Photonica Sinica, 2023, 52(5): 0552203

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Issue for Advanced Science and Technology of Astronomical Optics

    Received: Jan. 1, 2023

    Accepted: Mar. 14, 2023

    Published Online: Jul. 19, 2023

    The Author Email: XIAO Dong (dxiao@niaot.ac.cn)

    DOI:10.3788/gzxb20235205.0552203

    Topics