Journal of the European Optical Society-Rapid Publications, Volume. 19, Issue 1, 2023018(2023)

Application of imaging ellipsometry and white light interference microscopy for detection of defects in epitaxially grown 4H–SiC layers

Elena Ermilova*... Matthias Weise* and Andreas Hertwig* |Show fewer author(s)
Author Affiliations
  • Bundesanstalt für Materialforschung und -prüfung (BAM), Division 6.1 Surface Analysis and Interfacial Chemistry, Unter den Eichen 44–46, D-12203 Berlin, Germany
  • show less
    References(23)

    [1] C. Langpoklakpam, A.-C. Liu, K.-H. Chu, L.-H. Hsu, W.-C. Lee, S.-C. Chen, C.-W. Sun, M.-H. Shih, K.-Y. Lee, H.-C. Kuo. Review of silicon carbide processing for power MOSFET. Crystals, 12, 245(2022).

    [2] P. Wellmann, N. Ohtani, R. Rupp. Wide bandgap semiconductors for power electronics: Materials, devices, applications(2022).

    [3] M.A. Fraga, M. Bosi, M. Negri. Silicon carbide in microsystem technology – thin film versus bulk material. Advanced Silicon Carbide Devices and Processing(2015).

    [4] L. Dong, G.S. Sun, J. Yu, G.G. Yan, W.S. Zhao, L. Wang, X.H. Zhang, X.G. Li, Z.G. Wang. Structure and Origin of Carrot Defects on 4H-SiC Homoepitaxial Layers. Mater. Sci. Forum, 778–780, 354-357(2014).

    [5] H. Matsuhata, N. Sugiyama, B. Chen, T. Yamashita, T. Hatakeyama, T. Sekiguchi. Surface defects generated by intrinsic origins on 4H-SiC epitaxial wafers observed by scanning electron microscopy. Microscopy, 66, 95-102(2016).

    [6] P.-C. Chen, W.-C. Miao, T. Ahmed, Y.-Y. Pan, C.-L. Lin, S.-C. Chen, H.-C. Kuo, B.-Y. Tsui, D.-H. Lien. Defect inspection techniques in SiC. Nanoscale Res. Lett., 17, 30(2022).

    [7] J. Guo, Y. Yang, B. Raghothamachar, T. Kim, M. Dudley, J. Kim. Understanding the microstructures of triangular defects in 4H-SiC homoepitaxial. J. Crystal Growth, 480, 119-125(2017).

    [8] H.-K. Kim, S.I. Kim, S. Kim, N.-S. Lee, H.-K. Shin, C.W. Lee. Relation between work function and structural properties of triangular defects in 4H-SiC epitaxial layer: Kelvin probe force microscopic and spectroscopic analyses. Nanoscale, 12, 8216-8229(2020).

    [9] D. Abou-Ras, R. Caballero, C.-H. Fischer, C. Kaufmann, I. Lauermann, R. Mainz, H. Mönig, A. Schöpke, C. Stephan, C. Streeck, S. Schorr, A. Eicke, M. Döbeli, B. Gade, J. Hinrichs, T. Nunney, H. Dijkstra, V. Hoffmann, D. Klemm, V. Efimova, A. Bergmaier, G. Dollinger, T. Wirth, W. Unger, A. Rockett, A. Perez-Rodriguez, J. Alvarez-Garcia, V. Izquierdo-Roca, T. Schmid, P.-P. Choi, M. Müller, F. Bertram, J. Christen, H. Khatri, R. Collins, S. Marsillac, I. Kötschau. Comprehensive comparison of various techniques for the analysis of elemental distributions in thin films. Microsc. Microanal., 17, 728-751(2011).

    [10] H. Fujiwara. Spectroscopic ellipsometry: principles and applications(2007).

    [11] R.M.A. Azzam, N.M. Bashara. Ellipsometry and polarized light(1987).

    [12] D.-M. Rosu, E. Ortel, V.-D. Hodoroaba, R. Kraehnert, A. Hertwig. Ellipsometric porosimetry on pore-controlled TiO2 layers. Appl. Surface Sci., 421, 487-493(2017).

    [13] R. Sachse, M. Moor, R. Kraehnert, V.-D. Hodoroaba, A. Hertwig. Ellipsometry-based approach for the characterization of mesoporous thin films for H2 technologies. Adv. Eng. Mater., 24, 2101320(2022).

    [14] S. Funke, B. Miller, E. Parzinger, P. Thiesen, A.W. Holleitner, U. Wurstbauer. Imaging spectroscopic ellipsometry of MoS2. J. Phys. Condens. Matter, 28, 385301(2016).

    [15] U. Wurstbauer, C. Röling, U. Wurstbauer, W. Wegscheider, M. Vaupel, P.H. Thiesen, D. Weiss. Imaging ellipsometry of graphene. Appl. Phys. Lett., 97, 231901(2010).

    [16] P. Braeuninger-Weimer, S. Funke, R. Wang, P. Thiesen, D. Tasche, W. Viöl, S. Hofmann. Fast, noncontact, wafer-scale, atomic layer resolved imaging of two-dimensional materials by ellipsometric contrast micrography. ACS Nano, 12, 8555-8563(2018).

    [17] S. Zollner, J.G. Chen, E. Duda, T. Wetteroth, S.R. Wilson, J.N. Hilfiker. Dielectric functions of bulk 4H and 6H SiC and spectroscopic ellipsometry studies of thin SiC films on Si. J. Appl. Phys., 85, 8353-8361(1999).

    [18] T.E. Tiwald, J.A. Woollam, S. Zollner, J. Christiansen, R.B. Gregory, T. Wetteroth, S.R. Wilson, A.R. Powell. Carrier concentration and lattice absorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry. Phys. Rev. B, 60, 11464-11474(1999).

    [19] H. Li, C. Cui, S. Bian, J. Lu, X. Xu, O. Arteaga. Double-sided and single-sided polished 6H-SiC wafers with subsurface damage layer studied by Mueller matrix ellipsometry. J. Appl. Phys., 128, 235304(2020).

    [20] R.A. Synowicki. Suppression of backside reflections from transparent substrates. Phys. Status Solidi C, 5, 1085-1088(2008).

    [21] D. Malacara. Optical shop testing(2007).

    [22] P. De Groot. Principles of interference microscopy for the measurement of surface topography. Adv. Opt. Photonics, 7, 1-65(2015).

    [23] P.J. De Groot. The meaning and measure of vertical resolution in optical surface topography measurement. Appl. Sci., 7, 54(2017).

    Tools

    Get Citation

    Copy Citation Text

    Elena Ermilova, Matthias Weise, Andreas Hertwig. Application of imaging ellipsometry and white light interference microscopy for detection of defects in epitaxially grown 4H–SiC layers[J]. Journal of the European Optical Society-Rapid Publications, 2023, 19(1): 2023018

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Jan. 31, 2023

    Accepted: Apr. 5, 2023

    Published Online: Aug. 31, 2023

    The Author Email: Ermilova Elena (elena.ermilova@bam.de), Weise Matthias (elena.ermilova@bam.de), Hertwig Andreas (elena.ermilova@bam.de)

    DOI:10.1051/jeos/2023018

    Topics